LEADER 01176nam0 22003011i 450 001 UON00335618 005 20231205104237.888 010 $a978-95-328-8013-7 100 $a20091005d2008 |0itac50 ba 101 $ahrv 102 $aHR 105 $a|||| ||||| 200 1 $aMilan Generalic$eMuzej Matija Skurjeni 19. ozujka - 30 travnja 2008, Muzej Grada Koprivnice 3 205 $a30. srpnja 2008$bGalerija "Dom na zalu" 210 $aKoprivnica$cMuzej Grada Koprivnice$d2008 215 $a63 p.$ctav.$d21 cm. 606 $aPITTURA CROATA$xESPOSIZIONI$3UONC073339$2FI 620 $dKoprivnica$3UONL002428 676 $a709.4972$cSTORIA DELL'ARTE. CROAZIA$v21 700 1$aGENERALIC$bMilan$3UONV190001$0701687 712 02$aMuzej Grada Koprivnice$3UONV058602 712 $aMuzej Grada Koprivnice$3UONV276318$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00335618 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI AR DUOMO XI 0047 $eSI EO 43619 5 0047 996 $aMilan Generalic$91364589 997 $aUNIOR LEADER 05395nam 2200685 a 450 001 9910817438703321 005 20240313205957.0 010 $a9783527655281 010 $a352765528X 010 $a9783527655267 010 $a3527655263 010 $a9783527655298 010 $a3527655298 035 $a(CKB)2670000000356424 035 $a(EBL)1184233 035 $a(SSID)ssj0000991153 035 $a(PQKBManifestationID)11620898 035 $a(PQKBTitleCode)TC0000991153 035 $a(PQKBWorkID)10987665 035 $a(PQKB)11521997 035 $a(Au-PeEL)EBL1184233 035 $a(CaPaEBR)ebr10695912 035 $a(CaONFJC)MIL487147 035 $a(OCoLC)842881738 035 $a(MiAaPQ)EBC1184233 035 $a(Perlego)999928 035 $a(EXLCZ)992670000000356424 100 $a20130523d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBio-nanomaterials $edesigning materials inspired by nature /$fWolfgang Pompe ...[et al.] 205 $a1st ed. 210 $aWeinheim, Germany $cWiley-Vch$dc2013 215 $a1 online resource (472 p.) 300 $aDescription based upon print version of record. 311 08$a9783527410156 311 08$a3527410155 320 $aIncludes biographical references and index. 327 $aBio-Nanomaterials: Designing materials inspired by nature; Contents; Preface; 1 Molecular Units; 1.1 Case Studies; 1.1.1 Nucleic Acids; 1.1.2 Proteins; 1.1.3 Carbohydrates; 1.1.4 Lipids; 1.2 Basic Principles; 1.2.1 The Persistence Lengths of Biopolymer Chains; 1.2.2 Equilibrium Shape of a Semiflexible Polymer Chain; 1.2.3 The Load-Extension Diagram of a Semiflexible Polymer Chain; 1.2.4 Cooperativity; 1.2.5 Protein Folding; 1.2.6 DNA Melting Transition; 1.2.7 Biocatalytic Reactions; 1.3 Bioengineering; 1.3.1 Biointerfacing; 1.3.2 DNA-Based Nanotechnology 327 $a1.3.2.1 Biomolecular Templates for Submicrometer Electronic Circuitries 1.3.2.2 DNA-Based Nanoprobes; 1.3.3 Protein-Based Nanotechnology; References; 2 Molecular Recognition; 2.1 Case Study; 2.2 Basic Principles; 2.2.1 Complementary Interaction between Proteins and Ligands; 2.2.2 Cooperative Protein-Ligand Interaction; 2.2.3 The Enzyme-Linked Immunosorbent Assay; 2.3 Engineering of Biomolecular Recognition Systems; 2.3.1 Engineering of Protein-Based Bioaffine Materials; 2.3.1.1 Interfacing Mechanisms of Proteins via Bioaffinity; 2.3.2 Engineering of Sensing Biofunctionalized Materials 327 $a2.3.2.1 Design Principles of Biosensors 2.3.2.2 Integration of Sensing Biological Elements and Transducer Units; References; 3 Cell Adhesion; 3.1 Case Study; 3.2 Basic Principles; 3.2.1 The Cellular Mechanotransduction System; 3.2.2 Mechanical Impact of the ECM on Cell Development; 3.2.3 Influence of the Microenvironment Topology on the Cell Spreading and Development; 3.3 Bioengineering; 3.3.1 The Basic Approach and Goals; 3.3.2 Tailored Surfaces for In Vitro Culturing of Cells; 3.3.2.1 A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces 327 $a3.3.2.2 Regulation of Cell Fate by Nanostructured Surfaces 3.3.3 Three-Dimensional Scaffolds for Tissue Engineering; 3.3.4 Switchable Substrates and Matrices; References; 4 Whole-Cell Sensor Structures; 4.1 Case Studies; 4.2 Basic Principles; 4.3 Bioengineering; References; 5 Biohybrid Silica-Based Materials; 5.1 Case Studies; 5.2 Basic Principles; 5.2.1 Preparation of Silica-Based Xerogels; 5.2.2 Biological Properties of Silica-Based Biocers; 5.3 Bioengineering; 5.3.1 Bioactive Sol-Gel Coatings and Composites; 5.3.2 Biocatalytic Sol-Gel Coatings; 5.3.3 Bioremediation 327 $a5.3.4 Cell-Based Bioreactors 5.3.5 Silica-Based Controlled Release Structures; 5.3.6 Patterned Structures; 5.4 Silicified Geological Biomaterials; References; 6 Biomineralization; 6.1 Case Studies; 6.2 Basic Principles; 6.2.1 Precipitation; 6.2.1.1 Thermodynamics of Mineralization; 6.2.1.2 Kinetics of Mineralization; 6.2.2 Phenomenology of Biomineralization; 6.2.3 Basic Mechanisms in Biomineralization; 6.2.4 Biologically Mediated Mineralization: the Competition between Inhibition and Growth; 6.2.4.1 Effect of Polypeptides on Precipitate Habitus; 6.2.4.2 The Formation of Metastable Polymorphs 327 $a6.2.5 Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances 330 $aBio-nanotechnology covers the development of novel techniques and materials by making use of the inspiration derived from biomolecular structures and processes. The progress in molecular biology and microbiology over the past 50 years has provided a solid basis for such development.Well characterized natural biomolecules as well as tailored recombinant proteins and tailored microorganisms obtained by genetic engineering provide a large ""toolbox"" for the implementation of biological structures in a technical environment. Biologically inspired mater 606 $aNanostructured materials 615 0$aNanostructured materials. 676 $a620.117 700 $aPompe$b Wolfgang$01684236 701 $aPompe$b Wolfgang$01684236 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817438703321 996 $aBio-nanomaterials$94055619 997 $aUNINA