LEADER 01196oam 2200205z- 450 001 996394337203316 005 20220224231520.0 035 $a(OCoLC)17356775 035 $a(CKB)4940000000585224 035 $a(EXLCZ)994940000000585224 100 $a20211117c1688uuuu -u- - 101 0 $aeng 200 13$aAn exposition of the doctrine of the Church of England in the several articles proposed by Monsieur de Meaux, late Bishop of Condom, in his exposition of the doctrine of the Catholick Church : to which is prefix'd a particular account of Monsieur de Meau 210 $aEngland$cPrinted for Richard Chiswell .. 517 $aAn exposition of the doctrine of the Church of England in the several articles proposed by Monsieur de Meaux, late Bishop of Condom, in his exposition of the doctrine of the Catholick Church 700 $aWake$b William$0839282 906 $aBOOK 912 $a996394337203316 996 $aAn exposition of the doctrine of the Church of England in the several articles proposed by Monsieur de Meaux, late Bishop of Condom, in his exposition of the doctrine of the Catholick Church : to which is prefix'd a particular account of Monsieur de Meau$92317380 997 $aUNISA LEADER 00867nam0 22002531i 450 001 UON00275948 005 20231205103815.796 100 $a20060418d1909 |0itac50 ba 101 $agre 102 $aGR 105 $a|||| 1|||| 200 1 $aDemotika tragoudia$fAgis Theros 210 $aAthena$cPhoibos$d1909 215 $a126 p.$d24 cm. 620 $aGR$dAtene$3UONL000203 676 $a889$cLetteratura greca moderna$v21 700 1$aTHEROS$bAgis$3UONV160015$0691725 712 $aPhoibos$3UONV271691$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00275948 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI GRECO A 1066 $eSI MR 35363 5 1066 996 $aDemotika tragoudia$91241968 997 $aUNIOR LEADER 14218nam 22009853u 450 001 9910488709403321 005 20250628110042.0 010 $a3-030-68176-9 035 $a(OCoLC)1258660409 035 $aEBL6676594 035 $a(AU-PeEL)EBL6676594 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/71319 035 $a(MiAaPQ)EBC6676594 035 $a(PPN)258065419 035 $a(CKB)5470000000736368 035 $a(ODN)ODN0010187490 035 $a(oapen)doab71319 035 $a(Au-PeEL)EBL6676594 035 $a(EXLCZ)995470000000736368 100 $a20220617d2021|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Elements of Big Data Value $eFoundations of the Research and Innovation Ecosystem 205 $a1st ed. 210 $aCham $cSpringer International Publishing AG$d2021 215 $a1 online resource (412 p.) 225 0 $aComputer Science Series 300 $aDescription based upon print version of record. 311 18$a978-3-030-68175-3 327 $aIntro -- Foreword -- Foreword -- Foreword -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- Part I: Ecosystem Elements of Big Data Value -- The European Big Data Value Ecosystem -- 1 Introduction -- 2 What Is Big Data Value? -- 3 Strategic Importance of Big Data Value -- 4 Developing a European Big Data Value Ecosystem -- 4.1 Challenges -- 4.2 A Call for Action -- 4.3 The Big Data Value PPP (BDV PPP) -- 4.4 Big Data Value Association -- 5 The Elements of Big Data Value -- 5.1 Ecosystem Elements of Big Data Value -- 5.2 Research and Innovation Elements of Big Data Value -- 5.3 Business, Policy and Societal Elements of Big Data Value -- 5.4 Emerging Elements of Big Data Value -- 6 Summary -- References -- Stakeholder Analysis of Data Ecosystems -- 1 Introduction -- 2 Stakeholder Analysis -- 3 Who Is a Stakeholder? -- 4 Methodology -- 4.1 Phase 1: Case Studies -- 4.2 Phase 2: Cross-Case Analysis -- 5 Sectoral Case Studies -- 6 Cross-Case Analysis -- 6.1 Technology Adoption Stage -- 6.2 Data Value Chain -- 6.3 Strategic Impact of IT -- 6.4 Stakeholder Characteristics -- 6.5 Stakeholder Influence -- 7 Summary -- References -- A Roadmap to Drive Adoption of Data Ecosystems -- 1 Introduction -- 2 Challenges for the Adoption of Big Data Value -- 3 Big Data Value Public-Private Partnership -- 3.1 The Big Data Value Ecosystem -- 4 Five Mechanism to Drive Adoption -- 4.1 European Innovation Spaces (i-Spaces) -- 4.2 Lighthouse Projects -- 4.3 Technical Projects -- 4.4 Platforms for Data Sharing -- 4.4.1 Industrial Data Platforms (IDP) -- 4.4.2 Personal Data Platforms (PDP) -- 4.5 Cooperation and Coordination Projects -- 5 Roadmap for Adoption of Big Data Value -- 6 European Data Value Ecosystem Development -- 7 Summary -- References -- Achievements and Impact of the Big Data Value Public-Private Partnership: The Story so Far. 327 $a1 Introduction -- 2 The Big Data Value PPP -- 2.1 BDV PPP Vision and Objectives for European Big Data Value -- 2.2 Big Data Value Association (BDVA) -- 2.3 BDV PPP Objectives -- 2.4 BDV PPP Governance -- 2.5 BDV PPP Monitoring Framework -- 3 Main Activities and Achievements During 2018 -- 3.1 Mobilisation of Stakeholders, Outreach, Success Stories -- 4 Monitored Achievements and Impact of the PPP -- 4.1 Achievement of the Goals of the PPP -- 4.2 Progress Achieved on KPIs -- 4.2.1 Private Investments -- 4.2.2 Job Creation, New Skills and Job Profiles -- 4.2.3 Impact of the BDV PPP on SMEs -- 4.2.4 Innovations Emerging from Projects -- 4.2.5 Supporting Major Sectors and Major Domains with Big Data Technologies and Applications -- 4.2.6 Experimentation -- 4.2.7 SRIA Implementation and Update -- 4.2.8 Technical Projects -- 4.2.9 Macro-economic KPIs -- 4.2.10 Contributions to Environmental Challenges -- 4.2.11 Standardisation Activities with European Standardisation Bodies -- 5 Summary and Outlook -- References -- Part II: Research and Innovation Elements of Big Data Value -- Technical Research Priorities for Big Data -- 1 Introduction -- 2 Methodology -- 2.1 Technology State of the Art and Sector Analysis -- 2.2 Subject Matter Expert Interviews -- 2.3 Stakeholder Workshops -- 2.4 Requirement Consolidation -- 2.5 Community Survey -- 3 Research Priorities for Big Data Value -- 3.1 Priority `Data Management´ -- 3.1.1 Challenges -- 3.1.2 Outcomes -- 3.2 Priority `Data Processing Architectures´ -- 3.2.1 Challenges -- 3.2.2 Outcomes -- 3.3 Priority `Data Analytics´ -- 3.3.1 Challenges -- 3.3.2 Outcomes -- 3.4 Priority `Data Visualisation and User Interaction´ -- 3.4.1 Challenges -- 3.4.2 Outcomes -- 3.5 Priority `Data Protection´ -- 3.5.1 Challenges -- 3.5.2 Outcomes -- 4 Big Data Standardisation -- 5 Engineering and DevOps for Big Data -- 5.1 Challenges. 327 $a5.2 Outcomes -- 6 Illustrative Scenario in Healthcare -- 7 Summary -- References -- A Reference Model for Big Data Technologies -- 1 Introduction -- 2 Reference Model -- 2.1 Horizontal Concerns -- 2.1.1 Data Visualisation and User Interaction -- 2.1.2 Data Analytics -- 2.1.3 Data Processing Architectures -- 2.1.4 Data Protection -- 2.1.5 Data Management -- 2.1.6 Cloud and High-Performance Computing (HPC) -- 2.1.7 IoT, CPS, Edge and Fog Computing -- 2.2 Vertical Concerns -- 2.2.1 Big Data Types and Semantics -- 2.2.2 Standards -- 2.2.3 Communication and Connectivity -- 2.2.4 Cybersecurity -- 2.2.5 Engineering and DevOps for Building Big Data Value Systems -- 2.2.6 Marketplaces, Industrial Data Platforms and Personal Data Platforms (IDPs/PDPs), Ecosystems for Data Sharing and Innovat... -- 3 Transforming Transport Case Study -- 3.1 Data Analytics -- 3.2 Data Visualisation -- 3.3 Data Management -- 3.4 Assessing the Impact of Big Data Technologies -- 3.5 Use Case Conclusion -- 4 Summary -- References -- Data Protection in the Era of Artificial Intelligence: Trends, Existing Solutions and Recommendations for Privacy-Preserving T... -- 1 Introduction -- 1.1 Aim of the Chapter -- 1.2 Context -- 2 Challenges to Security and Privacy in Big Data -- 3 Current Trends and Solutions in Privacy-Preserving Technologies -- 3.1 Trend 1: User-Centred Data Protection -- 3.2 Trend 2: Automated Compliance and Tools for Transparency -- 3.3 Trend 3: Learning with Big Data in a Privacy-Friendly and Confidential Way -- 3.4 Future Direction for Policy and Technology Development: Implementing the Old and Developing the New -- 4 Recommendations for Privacy-Preserving Technologies -- References -- A Best Practice Framework for Centres of Excellence in Big Data and Artificial Intelligence -- 1 Introduction -- 2 Innovation Ecosystems and Centres of Excellence. 327 $a2.1 What Are Centres of Excellence? -- 3 Methodology -- 4 Best Practice Framework for Big Data and Artificial Intelligence Centre of Excellence -- 4.1 Environment -- 4.1.1 Industry -- 4.1.2 Policy -- 4.1.3 Societal -- 4.2 Strategic Capabilities -- 4.2.1 Strategy -- 4.2.2 Governance -- 4.2.3 Structure -- 4.2.4 Funding -- 4.2.5 People -- 4.2.6 Culture -- 4.3 Operational Capabilities -- 4.4 Impact -- 4.4.1 Economic Impact -- 4.4.2 Scientific Impact -- 4.4.3 Societal Impact -- 4.4.4 Impact Measured Through KPIs -- 5 How to Use the Framework -- 5.1 Framework in Action -- 6 Critical Success Factors for Centres of Excellence -- 6.1 Challenges -- 6.2 Success Factors -- 6.3 Mechanisms to Address Challenges -- 6.4 Ideal Situation -- 7 Summary -- References -- Data Innovation Spaces -- 1 Introduction -- 2 Introduction to the European Data Innovation Spaces -- 3 Key Elements of an i-Space -- 4 Role of an i-Space and its Alignment with Other Initiatives -- 5 BDVA i-Spaces Certification Process -- 6 Impact of i-Spaces in Their Local Innovation Ecosystems -- 7 Cross-Border Collaboration: Towards a European Federation of i-Spaces -- 8 Success Stories -- 8.1 CeADAR: Ireland´s Centre for Applied Artificial Intelligence -- 8.2 CINECA -- 8.3 EGI -- 8.4 EURECAT/Big Data CoE Barcelona -- 8.5 ITAINNOVA/Aragon DIH -- 8.6 ITI/Data Cycle Hub -- 8.7 Know-Center -- 8.8 NCSR Demokritos/Attica Hub for the Economy of Data and Devices (ahedd) -- 8.9 RISE/ICE by RISE -- 8.10 Smart Data Innovation Lab (SDIL) -- 8.11 TeraLab -- 8.12 Universidad Politécnica de Madrid/Madrid´s i-Space for Sustainability/AIR4S DIH -- 9 Summary -- Reference -- Part III: Business, Policy, and Societal Elements of Big Data Value -- Big Data Value Creation by Example -- 1 Introduction -- 2 How Can Big Data Transform Everyday Mobility and Logistics?. 327 $a3 Digitalizing Forestry by Harnessing the Power of Big Data -- 4 GATE: First Big Data Centre of Excellence in Bulgaria -- 5 Beyond Privacy: Ethical and Societal Implications of Data Science -- 6 A Three-Year Journey to Insights and Investment -- 7 Scaling Up Data-Centric Start-Ups -- 8 Campaign Booster -- 9 AI Technology Meets Animal Welfare to Sustainably Feed the World -- 10 Creating the Next Generation of Smart Manufacturing with Federated Learning -- 11 Towards Open and Agile Big Data Analytics in Financial Sector -- 12 Electric Vehicles for Humans -- 13 Enabling 5G in Europe -- 14 Summary -- References -- Business Models and Ecosystem for Big Data -- 1 Introduction -- 2 Big Data Business Approaches -- 2.1 Optimisation and Improvements -- 2.2 Upgrading and Revaluation -- 2.3 Monetising -- 2.4 Breakthrough -- 3 Data-Driven Business Opportunities -- 4 Leveraging the Data Ecosystems -- 4.1 Data-Sharing Ecosystem -- 4.2 Data Innovation Ecosystems -- 4.3 Value Networks in a Business Ecosystem -- 5 Data-Driven Innovation Framework and Success Stories -- 5.1 The Data-Driven Innovation Framework -- 5.2 Examples of Success Stories -- 5.2.1 Selectionnist -- 5.2.2 Arable -- 6 Conclusion -- References -- Innovation in Times of Big Data and AI: Introducing the Data-Driven Innovation (DDI) Framework -- 1 Introduction -- 2 Data-Driven Innovation -- 2.1 What Are Business Opportunities? -- 2.2 Characteristics of Data-Driven Innovation -- 2.3 How to Screen Data-Driven Innovation? -- 3 The ``Making-of´´ the DDI Framework -- 3.1 State-of-the-Art Analysis -- 3.2 DDI Ontology Building -- 3.3 Data Collection and Coding -- 3.3.1 Selection Criteria -- 3.3.2 Sample Data Generation -- 3.3.3 Coding of Data -- 3.4 Data Analysis -- 4 Findings of the Empirical DDI Research Study -- 4.1 General Findings -- 4.2 Value Proposition -- 4.3 Data -- 4.4 Technology. 327 $a4.5 Network Strategies. 330 $aThis open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation. 606 $aInformation retrieval$2bicssc 606 $aBusiness & management$2bicssc 606 $aResearch & development management$2bicssc 606 $aInformation technology industries$2bicssc 606 $aDatabases$2bicssc 610 $aInformation Storage and Retrieval 610 $aBusiness and Management, general 610 $aInnovation/Technology Management 610 $aThe Computer Industry 610 $aBig Data 610 $aInnovation and Technology Management 610 $aTechnology Commercialization 610 $aDigital Transformation 610 $aInnovation Spaces 610 $aData-Driven Innovation 610 $aData Analytics 610 $aTechnology Management 610 $aData Ecosystems 610 $aData Protection 610 $aBig Data Business Models 610 $aOpen Access 610 $aInformation retrieval 610 $aData warehousing 610 $aBusiness & Management 610 $aResearch & development management 610 $aIndustrial applications of scientific research & technological innovation 610 $aInformation technology industries 610 $aDatabases 615 7$aInformation retrieval 615 7$aBusiness & management 615 7$aResearch & development management 615 7$aInformation technology industries 615 7$aDatabases 686 $aBUS042000$aBUS070030$aBUS087000$aCOM021000$aCOM030000$2bisacsh 700 $aCurry$b Edward$0904514 701 $aMetzger$b Andreas$0963438 701 $aZillner$b Sonja$01237034 701 $aPazzaglia$b Jean-Christophe$01237035 701 $aGarcía Robles$b Ana$01237036 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910488709403321 996 $aThe Elements of Big Data Value$92871845 997 $aUNINA