LEADER 01108nam0 22002771i 450 001 UON00258287 005 20231205103701.728 100 $a20041026d1908 |0itac50 ba 101 $apor 102 $aPT 105 $a||||e ||||| 200 1 $aDiccionario do theatro portuguez$eobra profusamente illustrada$fSousa Bastos 210 $aLisboa$cImprensa Libanio da Silva$d1908 215 $a380 p.$cill.$d27 cm 606 $aDIZIONARI SCIENTIFICI E TECNICI$3UONC042203$2FI 606 $aTEATRO PORTOGHESE$xEnciclopedie e dizionari$3UONC055373$2FI 620 $aPT$dLisboa$3UONL003135 676 $a792.09469$cTeatro. Portogallo$v12 700 1$aBASTOS$bSousa$3UONV151158$0689418 712 $aImprensa Libanio da Silva$3UONV270451$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00258287 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI S.C III E 026 $eSI PO 3972 6 026 996 $aDiccionario do theatro portuguez$91238836 997 $aUNIOR LEADER 03439nam 2200541 450 001 9910819076003321 005 20211007112353.0 010 $a0-8218-9872-8 035 $a(CKB)3780000000000179 035 $a(EBL)3114530 035 $a(SSID)ssj0000888818 035 $a(PQKBManifestationID)11566307 035 $a(PQKBTitleCode)TC0000888818 035 $a(PQKBWorkID)10874442 035 $a(PQKB)10524080 035 $a(MiAaPQ)EBC3114530 035 $a(RPAM)17647344 035 $a(PPN)195408322 035 $a(EXLCZ)993780000000000179 100 $a20150416h20122012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCharacterization and topological rigidity of No?beling manifolds /$fAndrzej Nago?rko 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2012. 210 4$d©2012 215 $a1 online resource (92 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 223, Number 1048 300 $aMay 2013 , Volume 223, Number 1048 (second of 5 numbers)." 311 $a0-8218-5366-X 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Abstract""; ""Part 1 . Introduction and preliminaries""; ""Chapter 1. Introduction""; ""Chapter 2. Preliminaries""; ""2.1. Covers and interior covers""; ""2.2. Absolute extensors""; ""2.3. Nerves of covers and barycentric stars""; ""2.4. Strong universality""; ""2.5. -Homotopy equivalence""; ""2.6. -sets""; ""Part 2 . Reducing the proof of the main results to the construction of -regular and -semiregular \ { }-covers""; ""Chapter 3. Approximation within an _{ }-cover""; ""3.1. (a??±)-sets""; ""3.2. Approximation within a cover"" 327 $a""3.3. -collections\footnote{we shall not use the theorem proved in ths section until the third part of the paper.}""""Chapter 4. Constructing closed _{ }-covers""; ""4.1. Adjustment of a collection""; ""4.2. Limits of sequences of adjustments""; ""4.3. Construction of a closed _{ }-swelling""; ""Chapter 5. Carrier and nerve theorems""; ""5.1. Regular covers""; ""5.2. Carrier theorem""; ""5.3. Nerve theorem""; ""Chapter 6. Anticanonical maps and semiregularity""; ""6.1. A nerve theorem and the notion of semiregularity""; ""6.2. A construction of regular covers"" 327 $a""6.3. A construction of semiregular covers""""Chapter 7. Extending homeomorphisms by the use of a a???brick partitioningsa??? technique""; ""Chapter 8. Proof of the main results""; ""Part 3 . Constructing -semiregular and -regular \ { }-covers""; ""Chapter 9. Basic constructions in _{ }-spaces""; ""9.1. Adjustment to a -collection""; ""9.2. Fitting closed _{ }-neighborhoods""; ""9.3. Patching of holes""; ""Chapter 10. Core of a cover""; ""10.1. The existence of an -core""; ""10.2. An -core of a limit of a sequence of deformations""; ""10.3. Proof of theorem 10.1"" 410 0$aMemoirs of the American Mathematical Society. 606 $aTopological manifolds 615 0$aTopological manifolds. 676 $a514/.34 700 $aNago?rko$b Andrzej$f1976-$01650234 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819076003321 996 $aCharacterization and topological rigidity of No?beling manifolds$93999496 997 $aUNINA