LEADER 05031nam 2200553Ia 450 001 9910458230703321 005 20200520144314.0 010 $a1-281-31134-0 010 $a9786611311346 010 $a0-08-053593-3 035 $a(CKB)1000000000384455 035 $a(EBL)404733 035 $a(OCoLC)476219725 035 $a(MiAaPQ)EBC404733 035 $a(Au-PeEL)EBL404733 035 $a(CaPaEBR)ebr10379010 035 $a(CaONFJC)MIL131134 035 $a(EXLCZ)991000000000384455 100 $a20091030d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 200 10$aMathematical programming$b[electronic resource] $etheory and methods /$fS. M. Sinha 205 $a1st ed. 210 $aNew Delhi $cElsevier$d2006 215 $a1 online resource (589 p.) 300 $aDescription based upon print version of record. 311 $a81-312-0376-X 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Mathematical Programming: Theory and Methods; Copyright Page; Contents; Chapter 1. Introduction; 1.1 Background and Historical Sketch; 1.2. Linear Programming; 1.3. Illustrative Examples; 1.4. Graphical Solutions; 1.5. Nonlinear Programming; PART 1: MATHEMATICAL FOUNDATIONS; Chapter 2. Basic Theory of Sets and Functions; 2.1. Sets; 2.2. Vectors; 2.3. Topological Properties of Rn; 2.4. Sequences and Subsequences; 2.5. Mappings and Functions; 2.6. Continuous Functions; 2.7. Infimum and Supremum of Functions; 2.8. Minima and Maxima of Functions; 2.9. Differentiable Functions 327 $aChapter 3. Vector Spaces3.1. Fields; 3.2. Vector Spaces; 3.3. Subspaces; 3.4. Linear Dependence; 3.5. Basis and Dimension; 3.6. Inner Product Spaces; Chapter 4. Matrices and Determinants; 4.1. Matrices; 4.2. Relations and Operations; 4.3. Partitioning of Matrices; 4.4. Rank of a Matrix; 4.5. Determinants; 4.6. Properties of Determinants; 4.7. Minors and Cofactors; 4.8. Determinants and Rank; 4.9. The Inverse Matrix; Chapter 5. Linear Transformations and Rank; 5.1. Linear Transformations and Rank; 5.2. Product of Linear Transformations; 5.3. Elementary Transformations 327 $a5.4. Echelon Matrices and RankChapter 6. Quadratic Forms and Eigenvalue Problems; 6.1. Quadratic Forms; 6.2. Definite Quadratic Forms; 6.3. Characteristic Vectors and Characteristic Values; Chapter 7. Systems of Linear Equations and Linear Inequalities; 7.1. Linear Equations; 7.2. Existence Theorems for Systems of Linear Equations; 7.3. Basic Solutions and Degeneracy; 7.4. Theorems of the Alternative; Chapter 8. Convex Sets and Convex Cones; 8.1. Introduction and Preliminary Definitions; 8.2. Convex Sets and their Properties; 8.3. Convex Hulls; 8.4. Separation and Support of Convex Sets 327 $a8.5. Convex Polytopes and Polyhedra8.6. Convex Cones; Chapter 9. Convex and Concave Functions; 9.1. Definitions and Basic Properties; 9.2. Differentiable Convex Functions; 9.3. Generalization of Convex Functions; 9.4. Exercises; PART 2: LINEAR PROGRAMMING; Chapter 10. Linear Programming Problems; 10.1. The General Problem; 10.2. Equivalent Formulations; 10.3. Definitions and Terminologies; 10.4. Basic Solutions of Linear Programs; 10.5. Fundamental Properties of Linear Programs; 10.6. Exercises; Chapter 11. Simplex Method: Theory and Computation; 11.1. Introduction 327 $a11.2. Theory of the Simplex Method11.3. Method of Computation: The Simplex Algorithm; 11.4. The Simplex Tableau; 11.5. Replacement Operation; 11.6. Example; 11.7. Exercises; Chapter 12. Simplex Method: Initial Basic Feasible Solution; 12.1. Introduction: Artificial Variable Techniques; 12.2. The Two-Phase Method [ 117]; 12.3. Examples; 12.4. The Method of Penalties [71 ]; 12.5. Examples: Penalty Method; 12.6. Inconsistency and Redundancy; 12.7. Exercises; Chapter 13. Degeneracy in Linear Programming; 13.1. Introduction; 13.2. Charnes' Perturbation Method; 13.3. Example; 13.4. Exercises 327 $aChapter 14. The Revised Simplex Method 330 $aMathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and 606 $aProgramming (Mathematics) 606 $aMathematics 608 $aElectronic books. 615 0$aProgramming (Mathematics) 615 0$aMathematics. 676 $a005.1/15 700 $aSinha$b S. M$0920285 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458230703321 996 $aMathematical programming$92064185 997 $aUNINA LEADER 01072nam0 22002771i 450 001 UON00252850 005 20231205103636.954 010 $a88-07-10353-2 100 $a20040426d2003 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aGiustizia sommaria$ePratiche e ideali di giustizia in una societŕ di Ancien Régime (Torino XVIII secolo)$fSimona Cerutti 210 $aMilano$cFeltrinelli$d2003 215 $a228 p.$d23 cm. 410 1$1001UON00066184$12001 $aCampi del sapere 606 $aTORINO$xStoria sociale$xSec. 17.-18.$3UONC038584$2FI 620 $aIT$dMilano$3UONL000005 700 1$aCERUTTI$bSimona$3UONV100198$0141883 712 $aFeltrinelli$3UONV246160$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00252850 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI III STORIAEUR C A 0756 $eSI SC 39252 7 0756 996 $aGiustizia sommaria$966313 997 $aUNIOR