LEADER 06646nam 22018135 450 001 9910154743703321 005 20190708092533.0 010 $a1-4008-8240-0 024 7 $a10.1515/9781400882403 035 $a(CKB)3710000000631380 035 $a(SSID)ssj0001651329 035 $a(PQKBManifestationID)16425923 035 $a(PQKBTitleCode)TC0001651329 035 $a(PQKBWorkID)13423569 035 $a(PQKB)11647159 035 $a(MiAaPQ)EBC4738716 035 $a(DE-B1597)468022 035 $a(OCoLC)979580917 035 $a(DE-B1597)9781400882403 035 $a(EXLCZ)993710000000631380 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSimple Algebras, Base Change, and the Advanced Theory of the Trace Formula. (AM-120), Volume 120 /$fLaurent Clozel, James Arthur 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1989 215 $a1 online resource (248 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v351 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08517-X 311 $a0-691-08518-8 320 $aBibliography. 327 $tFrontmatter -- $tContents -- $tIntroduction -- $tChapter 1. Local Results -- $tChapter 2. The Global Comparison -- $tChapter 3. Base Change -- $tBibliography 330 $aA general principle, discovered by Robert Langlands and named by him the "functoriality principle," predicts relations between automorphic forms on arithmetic subgroups of different reductive groups. Langlands functoriality relates the eigenvalues of Hecke operators acting on the automorphic forms on two groups (or the local factors of the "automorphic representations" generated by them). In the few instances where such relations have been probed, they have led to deep arithmetic consequences. This book studies one of the simplest general problems in the theory, that of relating automorphic forms on arithmetic subgroups of GL(n,E) and GL(n,F) when E/F is a cyclic extension of number fields. (This is known as the base change problem for GL(n).) The problem is attacked and solved by means of the trace formula. The book relies on deep and technical results obtained by several authors during the last twenty years. It could not serve as an introduction to them, but, by giving complete references to the published literature, the authors have made the work useful to a reader who does not know all the aspects of the theory of automorphic forms. 410 0$aAnnals of mathematics studies ;$vno. 120. 606 $aRepresentations of groups 606 $aTrace formulas 606 $aAutomorphic forms 610 $a0E. 610 $aAddition. 610 $aAdmissible representation. 610 $aAlgebraic group. 610 $aAlgebraic number field. 610 $aApproximation. 610 $aArchimedean property. 610 $aAutomorphic form. 610 $aAutomorphism. 610 $aBase change. 610 $aBig O notation. 610 $aBinomial coefficient. 610 $aCanonical map. 610 $aCartan subalgebra. 610 $aCartan subgroup. 610 $aCentral simple algebra. 610 $aCharacteristic polynomial. 610 $aClosure (mathematics). 610 $aCombination. 610 $aComputation. 610 $aConjecture. 610 $aConjugacy class. 610 $aConnected component (graph theory). 610 $aContinuous function. 610 $aContradiction. 610 $aCorollary. 610 $aCounting. 610 $aCoxeter element. 610 $aCusp form. 610 $aCyclic permutation. 610 $aDense set. 610 $aDensity theorem. 610 $aDeterminant. 610 $aDiagram (category theory). 610 $aDiscrete series representation. 610 $aDiscrete spectrum. 610 $aDivision algebra. 610 $aEigenvalues and eigenvectors. 610 $aEisenstein series. 610 $aExact sequence. 610 $aExistential quantification. 610 $aField extension. 610 $aFinite group. 610 $aFinite set. 610 $aFourier transform. 610 $aFunctor. 610 $aFundamental lemma (Langlands program). 610 $aGalois extension. 610 $aGalois group. 610 $aGlobal field. 610 $aGrothendieck group. 610 $aGroup representation. 610 $aHaar measure. 610 $aHarmonic analysis. 610 $aHecke algebra. 610 $aHilbert's Theorem 90. 610 $aIdentity component. 610 $aInduced representation. 610 $aInfinite product. 610 $aInfinitesimal character. 610 $aInvariant measure. 610 $aIrreducibility (mathematics). 610 $aIrreducible representation. 610 $aL-function. 610 $aLanglands classification. 610 $aLaurent series. 610 $aLie algebra. 610 $aLie group. 610 $aLinear algebraic group. 610 $aLocal field. 610 $aMathematical induction. 610 $aMaximal compact subgroup. 610 $aMultiplicative group. 610 $aNilpotent group. 610 $aOrbital integral. 610 $aP-adic number. 610 $aPaley?Wiener theorem. 610 $aParameter. 610 $aParametrization. 610 $aPermutation. 610 $aPoisson summation formula. 610 $aReal number. 610 $aReciprocal lattice. 610 $aReductive group. 610 $aRoot of unity. 610 $aScientific notation. 610 $aSemidirect product. 610 $aSpecial case. 610 $aSpherical harmonics. 610 $aSubgroup. 610 $aSubset. 610 $aSummation. 610 $aSupport (mathematics). 610 $aTensor product. 610 $aTheorem. 610 $aTrace formula. 610 $aUnitary representation. 610 $aWeil group. 610 $aWeyl group. 610 $aZero of a function. 615 0$aRepresentations of groups. 615 0$aTrace formulas. 615 0$aAutomorphic forms. 676 $a512/.2 686 $aSK 240$2rvk 700 $aArthur$b James, $0348301 702 $aClozel$b Laurent, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154743703321 996 $aSimple Algebras, Base Change, and the Advanced Theory of the Trace Formula. (AM-120), Volume 120$92571941 997 $aUNINA LEADER 01169nam0 22003011i 450 001 UON00233391 005 20231205103513.128 010 $a97-220-2010-2 100 $a20030730d2002 |0itac50 ba 101 $apor 102 $aPT 105 $a||||0 ||||| 200 1 $aJaime Bunda, agente secreto$eestória de alguns mistérios$fPepetela 205 $a3a ediçao 210 $aLisboa$cDom Quixote$d2002 215 $a313 p.$d21 cm. 410 1$1001UON00174333$12001 $aAutores de Lingua Portuguesa$1210 $aLisboa$cDom Quixote. 620 $aPT$dLisboa$3UONL003135 676 $a869.8996$cLetteratura africana in portoghese$v21 700 0$aPEPETELA$3UONV113630$0528230 712 $aDom Quixote$3UONV264466$4650 790 1$aSANTOS, Artur Carlos Maurício Pestana : dos$zPEPETELA$3UONV202290 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00233391 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI Port Africa 059 $eSI LO 68028 5 059 996 $aJaime Bunda, agente secreto$91233320 997 $aUNIOR LEADER 00812nam a2200193 i 4500 001 991004353836207536 005 20241129111017.0 008 241129s1976 iv b er 001 0 fre d 040 $aBibl. Interfacoltà T. Pellegrino$bita$cSocioculturale Scs 041 0 $afre 082 04$a306.3620966$223 100 1 $aRenault, Francois$0427101 245 10$aLiberation d'esclaves et nouvelle servitude :$bles rachats de captifs africains pour le compte des colonies francaises apres l'abolition de l'esclavage /$cFrancois Renault 260 $aAbidjan :$bLes nouvelles editions africaines,$c1976 300 $a236 p., [2] carte di tav. :$bcarte geografiche ;$c24 cm 650 4$aTratta degli schiavi$zAfrica 912 $a991004353836207536 996 $aLiberation d'esclaves et nouvelle servitude$94296620 997 $aUNISALENTO