LEADER 01644cam2-2200469---450- 001 990000421190203316 005 20120515133640.0 010 $a88-348-6053-5 035 $a0042119 035 $aUSA010042119 035 $a(ALEPH)000042119USA01 035 $a0042119 100 $a20010502d1996----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aFederalismo fiscale e omogeneità di trattamento$fAntonia Aracri 210 $aTorino$cG. Giappichelli$d1996 215 $aIX, 261 p.$d24 cm 225 2 $aQuaderni del dipartimento di diritto pubblico$v4 410 0$1001000337882$12001$aQuaderni del dipartimento di diritto pubblico$fUniversità di Pisa$v, 4 606 0 $aFederalismo fiscale$2BNCF 676 $a343.45043 700 1$aARACRI,$bAntonia$0411403 801 0$aIT$bsalbc$gISBD 912 $a990000421190203316 951 $aXXIV.1. Coll. 10/ 5 (X 19 XIII 4)$b11825 G.$cXXIV.1. Coll. 10/ (X 19 XIII)$d00287892 959 $aBK 969 $aGIU 979 $aPATTY$b90$c20010502$lUSA01$h1154 979 $c20020403$lUSA01$h1650 979 $aCHIARA$b90$c20020724$lUSA01$h0954 979 $aANGELA$b90$c20031118$lUSA01$h1729 979 $aPATRY$b90$c20040406$lUSA01$h1629 979 $aRSIAV4$b90$c20100826$lUSA01$h1154 979 $aFIORELLA$b90$c20120515$lUSA01$h1305 979 $aFIORELLA$b90$c20120515$lUSA01$h1306 979 $aFIORELLA$b90$c20120515$lUSA01$h1306 979 $aFIORELLA$b90$c20120515$lUSA01$h1307 979 $aFIORELLA$b90$c20120515$lUSA01$h1336 996 $aFederalismo fiscale e omogeneità di trattamento$9626172 997 $aUNISA LEADER 11816nam 2200565 450 001 9910743241603321 005 20221009155031.0 010 $a981-16-8898-2 010 $a981-16-8899-0 010 $a981-16-8899-0 035 $a(MiAaPQ)EBC6904269 035 $a(Au-PeEL)EBL6904269 035 $a(CKB)21348218100041 035 $a(OCoLC)1302103282 035 $a(PPN)261522477 035 $a(EXLCZ)9921348218100041 100 $a20221009d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBio-fiber reinforced composite materials $emechanical, thermal and tribological properties /$fedited by K. Palanikumar, Rajmohan Thiagarajan, and B. Latha 210 1$aSingapore :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (371 pages) $cillustrations (chiefly color) 225 1 $aComposites Science and Technology (Springer (Firm)). 311 08$aPrint version: Palanikumar, K. Bio-Fiber Reinforced Composite Materials Singapore : Springer Singapore Pte. Limited,c2022 9789811688980 320 $aIncludes bibliographical references. 327 $aIntro -- Preface -- Contents -- About the Editors -- Bio Fibre Composites: Introduction and Applications -- Bio-fibre Reinforced Composites: Mechanical, Thermal and Tribological Properties and Industrial Applications-An Introduction -- 1 Introduction -- 2 Natural Fibers -- 3 Classification of Natural Fibres -- 3.1 Plant Fibres -- 3.2 Abaca -- 3.3 Coir -- 3.4 Cotton -- 3.5 Flax -- 3.6 Hemp -- 3.7 Jute -- 3.8 Ramie -- 3.9 Sisal -- 4 Applications -- 5 Future Scope -- References -- Trash Pineapple Leaf Fiber Reinforced Polymer Composite Materials for Light Applications -- 1 Introduction -- 2 Materials and Methods -- 2.1 Fiber Extraction -- 2.2 Epoxy and Hardener -- 2.3 Hand Lay-Up Method -- 2.4 Mold Release -- 2.5 Experimental Test Setups -- 3 Results and Discussion -- 3.1 PALF Reinforced Composites-Tensile Test -- 3.2 Pineapple Leaf Fiber Reinforced Composites-Compression Test -- 3.3 Pineapple Leaf Fiber Reinforced Composites-Bending Test -- 3.4 Comparison of Mechanical Properties -- 4 Conclusions -- References -- Bio-fibre Reinforced Polymeric Composites for Industrial, Medicine and Domestic Applications -- 1 Introduction -- 2 Automotive Applications -- 3 Aerospace Industry -- 4 Construction Industry -- 5 Domestic Applications -- 6 Marine Industry -- 7 Electrical and Electronic Applications -- 8 Bio-medical Applications -- 9 Musical Instruments -- 10 Other Industries -- 10.1 Energy Sector -- 10.2 Sporting Goods -- 11 Summary and Conclusion -- References -- Different Natural Fiber Reinforced Composites and Its Potential Industrial and Domestic Applications: A Review -- 1 Introduction -- 2 Natural Fibre Reinforced Composites Have a Variety of Applications -- 2.1 Coir Fiber-Strengthened Composite -- 2.2 Kenaf Fibre-Fortified Composite -- 2.3 Ramie Fibre-Strengthened Composites -- 2.4 Flax Fibre-Fortified Composite. 327 $a2.5 Jute Fibre-Strengthened Composite -- 2.6 Sisal Fiber-Strengthened Composite -- 2.7 Silk Fiber-Fortified Composite -- 2.8 Banana Fibre-Reinforced Composite -- 2.9 Bamboo Fiber-Fortified Composite -- 2.10 Bagasse Fibre-Strengthened Composite -- 2.11 Cotton Fibre-Reinforced Composites -- 2.12 Wheat Fiber Strengthened Composite -- 2.13 Abaca Fibre-Reinforced Composite -- 2.14 Oil Palm Fibre Reinforced Composites -- 2.15 Areca Fibre Reinforced Composites -- 2.16 Okra Fibre-Based Composite -- 2.17 Kapok Fibre-Reinforced Composites -- 2.18 Milkweed Fibre-Reinforced Composites -- 2.19 Pineapple Leaf Fiber Composites -- 2.20 Nettle Fibre-Reinforced Composites -- 2.21 Elephant Grass Fibre-Reinforced Composites -- 2.22 Luffa Fibre-Reinforced Composites -- 2.23 Rice Fibre-Reinforced Composites -- 2.24 Roselle (Hibiscus Sabdariffa) Fibre-Based Composites -- 2.25 Maize Fibre-Reinforced Composites -- 3 Challenges in Using Natural Fibers -- 4 Conclusion -- References -- Biodegradable Fibers, Polymers, Composites and Its Biodegradability, Processing and Testing Methods -- 1 Introduction -- 2 Biodegradable Composite -- 2.1 Biocomposite Reinforcements -- 3 Biodegradable Natural Fibrous Materials -- 3.1 Biodegradable Fibres Properties -- 4 Classification of Biodegradable Polymers -- 5 Biocomposites -- 6 Polymer Properties -- 6.1 Polymer Testing Methods -- 7 Biodegradation -- 8 Natural Fibre Biodegradations -- 9 Degradation of Biocomposites -- 10 Methods for Determination of Biodegradation -- 11 Testing Methods for Natural Fibre/polymer Biocomposites Materials -- 11.1 Composite Materials Testing Methods -- 12 Torsion -- 13 Examples of Biofibre Composites Applications -- 13.1 Processing Methods of Biocomposites -- References -- Bio Fibre Composites: Modification and Processing Techniques. 327 $aRole of Different Forms of Bamboo and Chemical Treatment on the Mechanical Properties of Compression Molded Green Composites -- 1 Introduction -- 2 Experimentation -- 2.1 Materials -- 2.2 Chemical Treatment -- 2.3 Composite Fabrication -- 2.4 Mechanical Testing -- 3 Results and Discussion -- 4 Conclusions -- References -- Optimization of Process Parameters in AWJ Cutting of Pineapple Fiber Reinforced Polymer Composites: Hybrid SCCSA Algorithm -- 1 Introduction -- 2 State of the Art -- 3 Box-Behnken Design -- 4 Development of Composites and Experimentation -- 5 Statistical Modelling of Experimental Work -- 6 Sine Cosine Crow Search Algorithm -- 6.1 SCA Algorithm -- 6.2 Crow Search Algorithm -- 6.3 Hybrid SCCSA Algorithm -- 7 Implementation of Hybrid SCCSA Algorithm in AWJ Process -- 8 Conclusion -- References -- Bio Fibre Composites: Mechanical Characterization -- Studies on Mechanical Characterisation of Bio-Fibre Reinforced Polymer Composites -- 1 Introduction -- 2 Mechanical Characterisation of Composite Materials -- 2.1 Tensile Test -- 2.2 Flexural Test -- 2.3 Impact Test -- 2.4 Hardness -- 3 Mechanical Characterisation of Single Fibre Reinforced Polymer Composites -- 4 Mechanical Characterisation of Hybrid Fibre Reinforced Polymer Composites -- 5 Summary -- References -- Fatigue Behaviour of Banyan/Neem Fibers Reinforced with Nano Cellulose Particulated Hybrid Epoxy Composite -- 1 Introduction -- 2 Materials and Methods -- 2.1 Materials Used -- 2.2 Banyan Fiber -- 2.3 Neem Fibre -- 2.4 Applications of the Hybrid Epoxy Composite -- 2.5 Fibre Treatment -- 2.6 Fibre Properties -- 2.7 Matrix Preparation -- 2.8 Fillers -- 2.9 Fabrication Process -- 2.10 Testing of the Hybrid Composite -- 3 Results and Discussion -- 3.1 Fatigue Analysis of Hybrid Composite -- 3.2 Surface Morphology of Hybrid Composite -- 4 Conclusion -- References. 327 $aMechanical Characterization of Kenaf/Carbon Fiber Reinforced Polymer Matrix Composites with Different Stacking Sequence -- 1 Introduction -- 2 Reinforcements and Fabrication Methods -- 2.1 Development of the Hybrid Composites -- 3 Experimentation of Hybrid Laminates -- 3.1 Tensile Test -- 3.2 Flexural Test -- 3.3 Low Impact Test -- 3.4 Hardness Test -- 4 Analysis and Discussion -- 4.1 Tensile Behavior of Composite Laminates -- 4.2 Flexural Properties of Hybrid Composite -- 4.3 Impact Properties of Hybrid Composites -- 4.4 Hardness Properties of Hybrid Composites -- 4.5 SEM Analysis of Hybrid Composites -- 5 Conclusions -- References -- Analysis of Mechanical Properties of Jute Fiber Reinforced with Epoxy/Styrene-Ethylene-Butylene-Styrene/Al Composites -- 1 Introduction -- 2 Experimental Procedure -- 2.1 Materials and Their Properties -- 2.2 Composite Preparation -- 3 Specimen Preparation and Testing of Mechanical Properties -- 3.1 Tensile Test -- 3.2 Flexural Test -- 3.3 Impact Test -- 3.4 Shore D Hardness Test -- 4 Results and Discussions -- 4.1 Tensile Test Results -- 4.2 Flexural Test Results -- 4.3 Impact and Hardness Test Results -- 5 Conclusion -- References -- Mechanical and Resonance Properties of Sustainable Polymer Composite Reinforced with Unidirectional Bio Palm Fiber -- 1 Introduction -- 2 Materials and Methods -- 3 Results and Discussions -- 3.1 Tensile Properties -- 3.2 Flexural Properties -- 4 Impact Properties -- 4.1 Modal Analysis -- 4.2 Scanning Electron Microscopic (SEM) Analysis -- 5 Conclusions -- References -- Evaluation of Mechanical Properties of Woven Hybrid Reinforced Composites Fabricated by Vacuum Assisted Compression Molding Technique -- 1 Introduction -- 2 Experimental Details -- 2.1 Materials -- 2.2 Composites Fabrication -- 2.3 Mechanical Testing -- 3 Results and Discussion -- 3.1 Tensile Properties. 327 $a3.2 Flexural Properties -- 3.3 Hardness -- 3.4 Morphological Examination Using Scanning Electron Microscope (SEM) -- 4 Conclusion -- References -- Influence of Fiber Content on Tensile and Flexural Properties of Ramie/Areca Fiber Composite-?n Algorithmic Approach Using Firefly Algorithm -- 1 Introduction -- 2 Fabrication of Composite -- 3 Firefly Algorithm -- 4 Results and Discussion -- 4.1 Influence of Fiber Content Versus Alkali Concentration on Tensile Strength -- 4.2 Influence of Fiber Content Versus During Temperature on Tensile Strength -- 4.3 Influence of Fiber Content Versus Compressive Pressure on Tensile Strength -- 4.4 Influence of Fiber Content Versus Alkali Concentration on Flexural Strength -- 4.5 Influence of Fiber Content Versus Curing Temperature on Flexural Strength -- 4.6 Influence of Fiber Content Versus Compression Pressure on Flexural Strength -- 5 Optimization of Parameters Using Firefly Algorithm -- 5.1 Development of a Mathematical Model -- 6 Conclusion -- References -- Bio Fibre Composites: Thermal Characterization -- Preparation, Mechanical Properties and Thermal Analysis of Basalt Fiber Reinforced with Polypropylene (BFRPP) Composites -- 1 Introduction -- 2 Materials and Methods -- 2.1 Material Used -- 2.2 Preparation of Composites -- 2.3 Tensile Test -- 2.4 Compressive Test -- 2.5 Flexural Test -- 2.6 Impact Test -- 2.7 Thermogravimetric Analysis (TGA) -- 2.8 Differential Scanning Calorimetry (DSC) Analysis -- 3 Results and Discussion -- 3.1 Microstructure Analysis -- 3.2 Thermogravimetric Analysis -- 3.3 DSC Analysis -- 3.4 Flexural Properties -- 3.5 Tensile Properties -- 3.6 Compressive Properties -- 3.7 Impact Strength Properties -- 4 Conclusions -- References -- Thermal Characterisation of Bio Fibre Composites -- 1 Introduction -- 2 Thermogravimetric Analysis (TGA) -- 3 Differential Scanning Calorimetry (DSC). 327 $a4 Dynamic Mechanical Analysis (DMA). 330 $aThis book provides an overview on the latest technology and applications of bio-based fiber composite materials. It covers the mechanical and thermal properties of bio-fibers for polymeric resins and explains the different pre-treatment methods used by the researchers for the enhancement. In addition, this book also presents a complete analysis on the tribological behavior of bio-fiber reinforced polymer composites to appreciate the friction and wear behavior. This book would be a handy to the industrial practitioners and researchers in the direction of achieving optimum design for the components made of natural fiber based polymer matrix composites. 410 0$aComposites Science and Technology (Springer (Firm)). 606 $aMaterials science 615 0$aMaterials science. 676 $a780 702 $aPalanikumar$b K. 702 $aThiagarajan$b Rajmohan 702 $aLatha$b B. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910743241603321 996 $aBio-Fiber Reinforced Composite Materials$92802946 997 $aUNINA LEADER 01016nam0 22002771i 450 001 UON00188124 005 20231205103202.694 010 $a04-362-5688-6 100 $a20030730d1984 |0itac50 ba 101 $aeng 102 $aGB 105 $a|||| 1|||| 200 1 $aAlexis$eTsar of All the Russias$fPhilip Longworth 210 $aLondon$cSecker & Warburg$d1984 215 $axiii, 305 p.$d23 cm. 606 $aALESSIO $3UONC097636$2FI 620 $aGB$dLondon$3UONL003044 676 $a947.048$cStoria della Russia. Regno di Alessio, 1645-1676$v21 700 1$aLONGWORTH$bPhilip$3UONV109776$0513100 712 $aSecker & Warburg$3UONV249248$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00188124 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI EO DUOMO IX G 0330 $eSI EO 19827 5 0330 996 $aAlexis$91294501 997 $aUNIOR