LEADER 00990nam0 22002291i 450 001 UON00183536 005 20231205103142.922 100 $a20030730d1982 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| 1|||| 200 1 $aPovertà e bisogni umani fondamentali$evecchie e nuove strategie degli organism i internazionali: il caso della Banca Mondiale$fGiuseppe Scidà 210 $aMilano$cJac a Book$d1982 - 266 p. ; 24 cm 410 1$1001UON00066261$12001 $aDi Fronte e Attraverso$1210 $aMilano$cJaca Book$v79 606 $aBANCA MONDIALE$3UONC024073$2FI 700 1$aScidà$bGiuseppe$3UONV106183$0118159 801 $aIT$bSOL$c20250221$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00183536 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI J 0105 $eSI SC 19725 5 0105 996 $aPovertà e bisogni umani fondamentali$9506164 997 $aUNIOR LEADER 02658nam 2200529Ia 450 001 9910958242803321 005 20200520144314.0 010 0 $a0191518972 010 0 $a9780191518973 035 $a(MiAaPQ)EBC7033857 035 $a(CKB)24235106400041 035 $a(MiAaPQ)EBC3052735 035 $a(Au-PeEL)EBL3052735 035 $a(CaPaEBR)ebr10272765 035 $a(CaONFJC)MIL198999 035 $a(OCoLC)63294235 035 $a(OCoLC)36590083 035 $a(FINmELB)ELB163930 035 $a(Au-PeEL)EBL7033857 035 $a(OCoLC)1336405499 035 $a(EXLCZ)9924235106400041 100 $a19970313d1997 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNaturalism in mathematics /$fPenelope Maddy 205 $a1st ed. 210 $aOxford $cClarendon Press ;$aNew York $cOxford University Press$d1997 215 $aviii, 254 p 320 $aIncludes bibliographical references (p. [235]-247) and index. 327 $aIntro -- Preface -- Contents -- PART I: THE PROBLEM -- 1. The Origins of Set Theory -- 2. Set Theory as a Foundation -- 3. The Standard Axioms -- 4. Independent Questions -- 5. New Axiom Candidates -- 6. V = L -- PART II: REALISM -- 1. Gödelian Realism -- 2. Quinean Realism -- 3. Set Theoretic Realism -- 4. A Realist's Case against V = L -- 5. Hints of Trouble -- 6. Indispensability and Scientific Practice -- 7. Indispensability and Mathematical Practice -- PART III: NATURALISM -- 1. Wittgensteinian Anti-Philosophy -- 2. A Second Gödelian Theme -- 3. Quinean Naturalism -- 4. Mathematical Naturalism -- 5. The Problem Revisited -- 6. A Naturalist's Case against V = L -- Conclusion -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z. 330 $aNaturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favour of another approach--naturalism. Penelope Maddy defines naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. 606 $aMathematics$xPhilosophy 606 $aNaturalism 615 0$aMathematics$xPhilosophy. 615 0$aNaturalism. 676 $a510/.1 700 $aMaddy$b Penelope$0536645 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910958242803321 996 $aNaturalism in mathematics$94465294 997 $aUNINA