LEADER 01026nam0 22002531i 450 001 UON00125398 005 20231205102734.289 100 $a20020107d1887 |0itac50 ba 101 $aeng 102 $aIN 105 $a|||| 1|||| 200 1 $aˆThe ‰Universal Anglo-Persan grammar$ewith vocabularies in Eng. Pers. & Guzerati$fSyed Abdul Latif 210 $aBombay$cEducation Society's Press$d1887 215 $a104 p.$d28 cm 620 $aIN$dMumbai$3UONL000115 686 $aIRA II AB$cIRAN - LINGUISTICA - PERSIANO - GRAMMATICHE E CORSI$2A 700 1$aABDUL LATIF$bSyed$3UONV077634$0667586 712 $aEducation Society's Steam Press$3UONV262107$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00125398 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI RARI IRA II AB 011 $eSI MR 80650 7 011 996 $aUniversal Anglo-Persan grammar$91317413 997 $aUNIOR LEADER 02625nam 22006255 450 001 9910299773703321 005 20200702214315.0 010 $a3-319-14310-7 024 7 $a10.1007/978-3-319-14310-1 035 $a(CKB)3710000000379583 035 $a(EBL)3108792 035 $a(SSID)ssj0001465383 035 $a(PQKBManifestationID)11755371 035 $a(PQKBTitleCode)TC0001465383 035 $a(PQKBWorkID)11472255 035 $a(PQKB)11182302 035 $a(DE-He213)978-3-319-14310-1 035 $a(MiAaPQ)EBC3108792 035 $a(PPN)184894565 035 $a(EXLCZ)993710000000379583 100 $a20150325d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBirational Geometry of Foliations /$fby Marco Brunella 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (140 p.) 225 1 $aIMPA Monographs ;$v1 300 $aDescription based upon print version of record. 311 $a3-319-14309-3 320 $aIncludes bibliographical references and index. 327 $aIntroduction: From Surfaces to Foliations -- Local Theory -- Foliations and Line Bundles -- Index Theorems -- Some Special Foliations -- Minimal Models -- Global 1-forms and Vector Fields -- The Rationality Criterion -- Numerical Kodaira Dimension -- Kodaira Dimension -- References. 330 $aThe text presents the birational classification of holomorphic foliations of surfaces.  It discusses at length the theory developed by L.G. Mendes, M. McQuillan and the author to study foliations of surfaces  in the spirit of the classification of complex algebraic surfaces. 410 0$aIMPA Monographs ;$v1 606 $aGeometry, Hyperbolic 606 $aNumber theory 606 $aGeometry 606 $aHyperbolic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21030 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 615 0$aGeometry, Hyperbolic. 615 0$aNumber theory. 615 0$aGeometry. 615 14$aHyperbolic Geometry. 615 24$aNumber Theory. 615 24$aGeometry. 676 $a510 700 $aBrunella$b Marco$4aut$4http://id.loc.gov/vocabulary/relators/aut$0508753 906 $aBOOK 912 $a9910299773703321 996 $aBirational geometry of foliations$91522553 997 $aUNINA