LEADER 03406nam 22006735 450 001 9910479876403321 005 20210914135920.0 010 $a1-4471-0589-3 024 7 $a10.1007/978-1-4471-0589-3 035 $a(CKB)3400000000088218 035 $a(SSID)ssj0000808466 035 $a(PQKBManifestationID)11464590 035 $a(PQKBTitleCode)TC0000808466 035 $a(PQKBWorkID)10777810 035 $a(PQKB)10047824 035 $a(DE-He213)978-1-4471-0589-3 035 $a(MiAaPQ)EBC3074332 035 $a(PPN)187456429 035 $a(EXLCZ)993400000000088218 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSets, Logic and Categories$b[electronic resource] /$fby Peter J. Cameron 205 $a1st ed. 1998. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d1998. 215 $a1 online resource (X, 182 p.) 225 1 $aSpringer Undergraduate Mathematics Series,$x1615-2085 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-85233-056-2 320 $aIncludes bibliographical references and index. 327 $a1. Naďve set theory -- 2. Ordinal numbers -- 3. Logic -- 4. First-order logic -- 5. Model theory -- 6. Axiomatic set theory -- 7. Categories -- 8. Where to from here? -- Solutions to selected exercises -- References. 330 $aSet theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material. 410 0$aSpringer Undergraduate Mathematics Series,$x1615-2085 606 $aMathematical logic 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aK-theory 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 615 0$aMathematical logic. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aK-theory. 615 14$aMathematical Logic and Foundations. 615 24$aCategory Theory, Homological Algebra. 615 24$aK-Theory. 676 $a511.3/22 686 $a03-01$2msc 686 $a00A05$2msc 686 $a13-01$2msc 700 $aCameron$b Peter J$4aut$4http://id.loc.gov/vocabulary/relators/aut$040938 906 $aBOOK 912 $a9910479876403321 996 $aSets, logic and categories$91425016 997 $aUNINA LEADER 01243nam0 22002651i 450 001 UON00097842 005 20231205102540.626 100 $a20020107d1986 |0itac50 ba 101 $ager 102 $aDE 105 $a|||| 1|||| 200 1 $aItalische Helme$estudien zu den aeltereisenzeitlichen Helmen Italiens und der Alpen$fMarkus Egg 205 $aMainz : Roemisch-Germanischen Zentralmuseum$b1986 210 $a2 v.$a30 cm Teil 1.: Text 215 $aIX, 261 p$cill Teil 2.: Tafeln 410 1$1001UON00088178$12001 $aRoemisch-Germanisches Zentralmuseum, Forschunginstitut fuer Vor- und Fruehgeschichte. Monographien$v11,1-2 620 $aAT$dWien$3UONL003140 700 1$aEGG$bMarkus$3UONV063516$0443759 712 $aRoemisch-Germanischen Zentralmuseum$3UONV260631$4650 801 $aIT$bSOL$c20240220$gRICA 912 $aUON00097842 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI O 1 073 01 $eSI MC 12418 7 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI O 1 073 02 $eSI MC 12419 7 996 $aItalische Helme$988636 997 $aUNIOR