LEADER 06265nam 22017895 450 001 9910154746903321 005 20190708092533.0 010 $a1-4008-8241-9 024 7 $a10.1515/9781400882410 035 $a(CKB)3710000000627786 035 $a(SSID)ssj0001651256 035 $a(PQKBManifestationID)16425852 035 $a(PQKBTitleCode)TC0001651256 035 $a(PQKBWorkID)12623624 035 $a(PQKB)11346273 035 $a(MiAaPQ)EBC4738718 035 $a(DE-B1597)468030 035 $a(OCoLC)979580918 035 $a(DE-B1597)9781400882410 035 $a(EXLCZ)993710000000627786 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCosmology in (2 + 1) -Dimensions, Cyclic Models, and Deformations of M2,1. (AM-121), Volume 121 /$fVictor Guillemin 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1989 215 $a1 online resource (236 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v352 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08514-5 311 $a0-691-08513-7 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tContents -- $tForeword -- $tPart I. A relativistic approach to Zoll phenomena -- $tPart II. The general theory of Zollfrei deformations -- $tPart III. Zollfrei deformations of M2,1 -- $tPart IV. The generalized x-ray transform -- $tPart V. The Floquet theory -- $tBibliography 330 $aThe subject matter of this work is an area of Lorentzian geometry which has not been heretofore much investigated: Do there exist Lorentzian manifolds all of whose light-like geodesics are periodic? A surprising fact is that such manifolds exist in abundance in (2 + 1)-dimensions (though in higher dimensions they are quite rare). This book is concerned with the deformation theory of M2,1 (which furnishes almost all the known examples of these objects). It also has a section describing conformal invariants of these objects, the most interesting being the determinant of a two dimensional "Floquet operator," invented by Paneitz and Segal. 410 0$aAnnals of mathematics studies ;$vno. 121. 606 $aCosmology$xMathematical models 606 $aGeometry, Differential 606 $aLorentz transformations 610 $aAutomorphism. 610 $aBijection. 610 $aC0. 610 $aCanonical form. 610 $aCanonical transformation. 610 $aCauchy distribution. 610 $aCausal structure. 610 $aCayley transform. 610 $aCodimension. 610 $aCohomology. 610 $aCokernel. 610 $aCompactification (mathematics). 610 $aComplexification (Lie group). 610 $aComputation. 610 $aConformal geometry. 610 $aConformal map. 610 $aConformal symmetry. 610 $aConnected sum. 610 $aContact geometry. 610 $aCorank. 610 $aCovariant derivative. 610 $aCovering space. 610 $aDeformation theory. 610 $aDiagram (category theory). 610 $aDiffeomorphism. 610 $aDifferentiable manifold. 610 $aDifferential operator. 610 $aDimension (vector space). 610 $aEinstein field equations. 610 $aEquation. 610 $aEuler characteristic. 610 $aExistential quantification. 610 $aFiber bundle. 610 $aFibration. 610 $aFloquet theory. 610 $aFour-dimensional space. 610 $aFourier integral operator. 610 $aFourier transform. 610 $aFundamental group. 610 $aGeodesic. 610 $aHamilton?Jacobi equation. 610 $aHilbert space. 610 $aHolomorphic function. 610 $aHolomorphic vector bundle. 610 $aHyperfunction. 610 $aHypersurface. 610 $aIntegral curve. 610 $aIntegral geometry. 610 $aIntegral transform. 610 $aIntersection (set theory). 610 $aInvertible matrix. 610 $aK-finite. 610 $aLagrangian (field theory). 610 $aLie algebra. 610 $aLight cone. 610 $aLinear map. 610 $aManifold. 610 $aMaxima and minima. 610 $aMinkowski space. 610 $aModule (mathematics). 610 $aNotation. 610 $aOne-parameter group. 610 $aParametrix. 610 $aParametrization. 610 $aPrincipal bundle. 610 $aProduct metric. 610 $aPseudo-differential operator. 610 $aQuadratic equation. 610 $aQuadratic form. 610 $aQuadric. 610 $aRadon transform. 610 $aRiemann surface. 610 $aRiemannian manifold. 610 $aSeifert fiber space. 610 $aSheaf (mathematics). 610 $aSiegel domain. 610 $aSimply connected space. 610 $aSubmanifold. 610 $aSubmersion (mathematics). 610 $aSupport (mathematics). 610 $aSurjective function. 610 $aSymplectic manifold. 610 $aSymplectic vector space. 610 $aSymplectomorphism. 610 $aTangent space. 610 $aTautology (logic). 610 $aTensor product. 610 $aTheorem. 610 $aTopological space. 610 $aTopology. 610 $aTwo-dimensional space. 610 $aUnit vector. 610 $aUniversal enveloping algebra. 610 $aVariable (mathematics). 610 $aVector bundle. 610 $aVector field. 610 $aVector space. 610 $aVerma module. 610 $aVolume form. 610 $aX-ray transform. 615 0$aCosmology$xMathematical models. 615 0$aGeometry, Differential. 615 0$aLorentz transformations. 676 $a523.1/072/4 700 $aGuillemin$b Victor, $040563 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154746903321 996 $aCosmology in (2 + 1) -Dimensions, Cyclic Models, and Deformations of M2,1. (AM-121), Volume 121$92788032 997 $aUNINA LEADER 01395nam 2200361 n 450 001 996392824303316 005 20221108062043.0 035 $a(CKB)1000000000686130 035 $a(EEBO)2240917647 035 $a(UnM)99832861 035 $a(UnM)9928217700971 035 $a(EXLCZ)991000000000686130 100 $a19951214d1692 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 02$aA sermon preached at the primary visitation of the Right Reverend Father in God, John, Lord Bishop of Norwich$b[electronic resource] $eJune, 20th. 1692. By George Raymond, A.M. minister of St. Lawrence in Ipswich 210 $aLondon $cprinted for John Marston bookseller in Bury, and sold by Randall Taylor in London$dMDCXCII. [1692] 215 $a[4], 26, [2] p 300 $aThe last leaf is blank. 300 $aReproduction of the original in the Cambridge University Library. 330 $aeebo-0021 606 $aVisitation sermons$vEarly works to 1800 606 $aSermons, English$y17th century 615 0$aVisitation sermons 615 0$aSermons, English 700 $aRaymond$b George$cA.M.$0843820 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bWaOLN 906 $aBOOK 912 $a996392824303316 996 $aA sermon preached at the primary visitation of the Right Reverend Father in God, John, Lord Bishop of Norwich$92307834 997 $aUNISA LEADER 01053nam0 22002771i 450 001 UON00062853 005 20231205102315.707 100 $a20020107d1974 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| 1|||| 200 1 $aˆIl ‰marxismo di mao Tse tung e la dialettica$fRossana rossanda, Charles Bettelheim 210 $aMilano$cfeltrinelli editore$d1974 215 $a1v$d23 cm 606 $aMarxismo$xCina$xTeorici$3UONC012106$2FI 620 $aIT$dMilano$3UONL000005 686 $aCIN V$cCINA - POLITOLOGIA$2A 700 1$aRossanda$bRossana$3UONV040136$00 701 1$aBettelheim$bCharles$3UONV017833 712 $aFeltrinelli$3UONV246160$4650 801 $aIT$bSOL$c20250627$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00062853 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI CIN V 082 $eSI MR 2484 7 082 996 $aMarxismo di mao Tse tung e la dialettica$91172387 997 $aUNIOR