LEADER 03216nam 22003493a 450 001 9910765506403321 005 20250203235435.0 010 $a9783038977513 010 $a3038977519 024 8 $a10.3390/books978-3-03897-751-3 035 $a(CKB)5400000000000569 035 $a(ScCtBLL)307d3cac-aa3d-470e-9a5f-d96378b7b33b 035 $a(OCoLC)1105801709 035 $a(EXLCZ)995400000000000569 100 $a20250203i20192019 uu 101 0 $aeng 135 $auru|||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPlasma Catalysis$fAnnemie Bogaerts 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 online resource (1 p.) 330 $aPlasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma-catalyst interactions, in order to further improve the applications. 610 00$aplasma catalysis; mode transition; packed-bed dielectric barrier discharge; particle-in- cell/Monte Carlo collision method; surface filament; gas composition; self-cooling; dielectric barrier discharge; CO2 decomposition; CO selectivity; packing materials; toluene; CeO2; mineralization; in plasma-catalysis; post plasma-catalysis; relative humidity; plasmas-catalysis; non-thermal plasmas; perovskite catalysts; nonstoichiometry; H2S oxidation; plasma catalysis; gallium; indium; Ga-In alloys; radiofrequency plasma; ammonia synthesis; rotating gliding arc plasma; tar destruction; toluene; naphthalene; phenanthrene; catalyst; dielectric barrier discharge (DBD); isotope labelling; methane reforming; ammonia synthesis; plasma catalysis; dry reforming of methane; dielectric barrier discharge; packing materials; plasma catalysis; VOC abatement; air pollution; zeolites; adsorption-plasma catalysis; NOx conversion; DBD plasma; Manganese; bimetal; nanocatalyst; plasma catalysis; catalyst preparation; NH3 decomposition; H2 generation; nonequilibrium plasma; plasma catalysis; gas temperature; calcium carbonate decomposition; n/a 700 $aBogaerts$b Annemie$01312704 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910765506403321 996 $aPlasma Catalysis$93040646 997 $aUNINA LEADER 01386nam0 22003131i 450 001 UON00006610 005 20231205101914.187 100 $a20020107d1992 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| 1|||| 200 1 $aˆIl ‰Mahabharata$fdi Vyasa$graccontato da Mario Savelloni (Manonath das) 210 $aRoma$cCentro Studi Veda$d1992 215 $a378 p.$d22 c 300 $aCorretto e revisionato da Eugenia Romano 410 1$1001UON00006612$12001 $aˆLe ‰più belle storie dell'India$v2 606 $aLetteratura sanscrita $xMahabharata$3UONC000299$2FI 686 $aSI VII A$cSubcontinente indiano - Religione e filosofia - Hinduismo$2A 700 0$aVYASA$3UONV005566$0654583 702 1$aSAVELLONI$bMario$3UONV005565 790 1$aVy?sa, K???a Dvaipa?yana$zVYASA$3UONV292389 790 0$aVjása$zVYASA$3UONV292392 790 0$aMANONATH DAS$zSAVELLONI, Mario$3UONV005567 801 $aIT$bSOL$c20251107$gRICA 912 $aUON00006610 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI SI FONDO PANDEY 014 TERZO PIANO $eSI 41767 5 014 TERZO PIANO 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI SI VII A 460 N $eSI SA 73231 5 460 N 996 $aMahabharata$93894899 997 $aUNIOR