LEADER 04279nam 22006615 450 001 9911061733803321 005 20260123120355.0 010 $a981-9541-34-4 024 7 $a10.1007/978-981-95-4134-8 035 $a(CKB)45007221800041 035 $a(MiAaPQ)EBC32515680 035 $a(Au-PeEL)EBL32515680 035 $a(DE-He213)978-981-95-4134-8 035 $a(EXLCZ)9945007221800041 100 $a20260123d2026 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAb initio Quantum Monte Carlo Tutorial $eGoing beyond DFT /$fby Ryo Maezono 205 $a1st ed. 2026. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2026. 215 $a1 online resource (486 pages) 225 1 $aChemistry and Materials Science Series 311 08$a981-9541-33-6 327 $a1. Introduction -- 2. Running a calculation ?rst -- 3. Di?usion Monte Carlo method -- 4. Variational optimization of many-body wavefunctions -- 5. Generating trial nodes with a DFT package -- 6. Review of procedures and molecular system calculations -- 7. Theory of di?usion Monte Carlo method -- 8. Further topics on underlying theory -- 9. Practical topics -- 10. Essence of many-body electronic correlation theory -- 11. Appendix A: Terminal Setting (For Macintosh) -- 12. Appendix B: Terminal Environment Setup (Windows Version) -- 13. Appendix C: Derivation of the di?usion equation from random walk -- 14. Appendix D: Supplementary remarks on mathematical topics -- 15. Appendix E: Supplementary notes on electronic structure theory.-16. Appendix F: Notes on density functional theory -- 17. Appendix G: Tools used in many-body perturbation theory -- 18. Appendix H: Overview of many-body perturbation theory.-Index. 330 $aThis book offers a unique ?learn-by-tutorial? approach for ab initio quantum Monte Carlo (QMC) electronic state calculations. The ab initio QMC method is a representative ?Beyond DFT? technique that overcomes challenges faced by the widely used density functional theory (DFT) in materials science. This is the first book focusing on simulation operations of ab initio QMC methods in a tutorial format. This book explains the theoretical background of the ab initio QMC method as a showcase of many-body electron theory attracting interest also from fundamental scientists dealing with quantum many-body problems. The content of this book is written in an accessible manner, targeting the same audience as the author?s previous work, ?Ab initio Calculation Tutorial: For Materials Analysis, Informatics and Design.? It is structured to allow beginners in simulation from experimental fields and industry to set up practice codes on their personal PCs and learn independently, without assuming prior knowledge of many-body electron theory or simulation science. Readers learn how to solve the problems on intermolecular binding forces in biomolecular systems, magnetic descriptions in spintronics, and material properties involving discontinuous density distributions such as surfaces, interfaces, and defects. 410 0$aChemistry and Materials Science Series 606 $aMaterials science$xData processing 606 $aChemistry$xData processing 606 $aQuantum chemistry 606 $aMaterials 606 $aChemistry 606 $aComputer simulation 606 $aComputational Materials Science 606 $aComputational Chemistry 606 $aQuantum Chemistry 606 $aComputational Design Of Materials 615 0$aMaterials science$xData processing. 615 0$aChemistry$xData processing. 615 0$aQuantum chemistry. 615 0$aMaterials. 615 0$aChemistry. 615 0$aComputer simulation. 615 14$aComputational Materials Science. 615 24$aComputational Chemistry. 615 24$aQuantum Chemistry. 615 24$aComputational Design Of Materials. 676 $a620.100285 700 $aMaezono$b Ryo$01359669 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911061733803321 996 $aAb initio Quantum Monte Carlo Tutorial$94539763 997 $aUNINA