LEADER 01308nam 22003853 450 001 9911054614603321 005 20260111090359.0 010 $a1-119-33237-0 010 $a1-394-43489-8 035 $a(MiAaPQ)EBC32476800 035 $a(Au-PeEL)EBL32476800 035 $a(CKB)44915016600041 035 $a(OCoLC)1569123549 035 $a(EXLCZ)9944915016600041 100 $a20260111d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntegration 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$d©2026. 215 $a1 online resource (442 pages) 311 08$a1-78630-013-3 330 $aThis book presents a simple and novel theory of integration, both real and vectorial, particularly suitable for the study of PDEs.This theory allows for integration with values in a Neumann space E, i.e.in which all Cauchy sequences converge, encompassing Neumann and Fréchet spaces, as well as "weak" spaces and distribution spaces. 700 $aSimon$b Jacques$0342532 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911054614603321 996 $aIntegration$94528953 997 $aUNINA