LEADER 02336nam 22004695 450 001 9911049108303321 005 20260102120630.0 010 $a3-032-06967-X 024 7 $a10.1007/978-3-032-06967-2 035 $a(CKB)44770030000041 035 $a(MiAaPQ)EBC32470829 035 $a(Au-PeEL)EBL32470829 035 $a(DE-He213)978-3-032-06967-2 035 $a(EXLCZ)9944770030000041 100 $a20260102d2026 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Introduction to the Classical Approximation Methods in Applied Mechanics /$fby Andreas Öchsner 205 $a1st ed. 2026. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2026. 215 $a1 online resource (116 pages) 225 1 $aSpringerBriefs in Computational Mechanics,$x2191-5350 311 08$a3-032-06966-1 327 $aIntroduction -- Finite Difference Method -- Finite Element Method -- Finite Volume Method -- Boundary Element Method -- Comparison of the Methods. 330 $aThis book presents a unified approach to classical approximation methods in engineering by applying the weighted residual method to transform differential equations into solvable algebraic systems. It demonstrates how this procedure underlies the finite difference, finite element, finite volume, and boundary element methods. The mechanical focus is on the one-dimensional tensile bar, allowing the mathematical framework and resulting matrix equations to be fully displayed and understood without symbolic abstraction. This approach supports a clear understanding of the derivation processes and is designed to help readers implement and extend features such as constitutive models in commercial simulation tools. 410 0$aSpringerBriefs in Computational Mechanics,$x2191-5350 606 $aMechanics, Applied 606 $aEngineering Mechanics 615 0$aMechanics, Applied. 615 14$aEngineering Mechanics. 676 $a620.1 700 $aO?chsner$b Andreas$0317948 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911049108303321 996 $aAn Introduction to the Classical Approximation Methods in Applied Mechanics$94520519 997 $aUNINA