LEADER 08455nam 22004933 450 001 9911048016803321 005 20251017080530.0 010 $a0-443-23911-8 035 $a(MiAaPQ)EBC32345111 035 $a(Au-PeEL)EBL32345111 035 $a(CKB)41640921600041 035 $a(OCoLC)1545134949 035 $a(EXLCZ)9941640921600041 100 $a20251017d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStructural Adhesive Bonding for Automotive Applications 205 $a1st ed. 210 1$aChantilly :$cElsevier Science & Technology,$d2025. 210 4$dİ2025. 215 $a1 online resource (367 pages) 225 1 $aWoodhead Publishing Series in Welding and Other Joining Technologies Series 311 08$a0-443-23912-6 327 $aFront Cover -- Structural Adhesive Bonding for Automotive Applications -- Copyright Page -- Contents -- List of contributors -- About the author(s) -- Preface -- 1 Introduction -- 1.1 Introduction -- 1.2 Main concepts in adhesive bonding -- 1.3 Advantages of adhesive bonding for automotive applications -- 1.4 Limitations of adhesive bonding for automotive applications -- 1.5 Use of adhesive bonding in the automotive industry -- 1.6 Outline of the book -- References -- 2 Theory of adhesion -- 2.1 Introduction -- 2.2 Wetting -- 2.3 Theories of adhesion -- 2.3.1 Mechanical interlocking -- 2.3.2 Chemical and physical adsorption -- 2.4 Conclusions -- References -- 3 Adhesives used in automotive applications -- 3.1 Structural adhesives -- 3.1.1 One-component epoxy adhesives -- 3.1.2 Two-component epoxy adhesives -- 3.1.3 Two-component acrylic adhesives -- 3.1.4 Two-component polyurethane adhesives -- 3.2 Nonstructural adhesives and sealants -- 3.2.1 Silicone adhesives -- 3.2.2 Polysulphide adhesives -- 3.2.3 One-component polyurethane adhesives -- 3.2.4 Pressure-sensitive adhesives -- 3.3 Mechanical characterization of adhesives -- 3.3.1 Bulk tensile and compression testing -- 3.3.2 Shear testing -- 3.3.3 Fracture toughness testing -- 3.3.3.1 Mode I testing -- 3.3.3.2 Mode II testing -- 3.3.4 Other characterization methods -- 3.3.4.1 Mixed-mode testing -- 3.3.4.2 Arcan testing -- 3.4 Effect of temperature on adhesive properties -- 3.5 Effect of moisture on adhesive properties -- 3.6 Effect of strain rate on adhesive properties -- 3.7 Conclusions -- References -- 4 Joint manufacturing -- 4.1 Manufacture process -- 4.2 Adhesive storage -- 4.2.1 Storage time and shelf life -- 4.2.2 Humidity -- 4.2.3 Temperature -- 4.3 Surface preparation -- 4.3.1 Passive processes -- 4.3.2 Active processes -- 4.3.3 Primers and adhesion promoters. 327 $a4.4 Adhesive metering, mixing and application -- 4.4.1 Importance of adhesive metering and mixing -- 4.4.2 Adhesive application -- 4.5 Joint assembly -- 4.5.1 Moulds and jigs -- 4.5.2 Adhesive thickness control -- 4.6 Adhesive hardening -- 4.6.1 Heat curing -- 4.6.2 Shrinkage -- 4.6.3 Residual stresses -- 4.7 Effect of manufacturing parameters on joint performance -- 4.7.1 Impact of adhesive properties -- 4.7.2 Effect of adhesive thickness -- 4.7.3 Influence of adherend properties -- 4.7.4 Effect of overlap length -- 4.8 Conclusion -- References -- 5 Health and safety -- 5.1 Introduction -- 5.2 General precautions associated with adhesive application and use -- 5.2.1 Use of personal protective equipment -- 5.2.1.1 Eye protection -- 5.2.1.2 Hand protection -- 5.2.1.3 Foot protection -- 5.2.1.4 Respiratory protection -- 5.3 Dangers associated to adhesives typically used in the automotive industry -- 5.3.1 Epoxies -- 5.3.2 Polyurethanes -- 5.3.3 Acrylics -- 5.3.4 Synthetic rubbers -- 5.3.5 Hot melts -- 5.4 Dangers associated to surface treatments used in the automotive industry -- 5.4.1 Chemical substance-related risks -- 5.4.2 Adherend-related risks -- 5.4.3 Machinery-related risks -- 5.5 Ergonomical and operational hazards related to adhesive application -- 5.6 Environmental protection and safe disposal -- 5.7 Conclusions -- References -- 6 Quality control -- 6.1 Introduction -- 6.2 Qualification of materials used in a bonding process -- 6.2.1 Glass transition temperature control -- 6.2.2 Surface state and surface energy -- 6.3 Control of the manufacturing process -- 6.4 Posthardening control -- 6.4.1 Common defects in bonded joints -- 6.4.2 Destructive testing methods -- 6.4.2.1 Component and full-scale testing -- 6.4.2.2 Analysis of fracture surfaces -- 6.4.3 Nondestructive testing processes -- 6.4.3.1 Visual inspection -- 6.4.3.2 Tap testing. 327 $a6.4.3.3 Ultrasonic testing -- 6.4.3.4 X-ray testing -- 6.4.3.5 Thermal-infrared testing -- 6.4.3.6 Acoustic emission testing -- 6.4.3.7 Laser-based testing -- 6.4.3.8 Lamb wave and mechanical impedance spectroscopy-based analyses -- 6.5 Conclusions -- References -- 7 Debonding and repair -- 7.1 Types and characteristics of dismantlable adhesives -- 7.1.1 Classical dismantling -- 7.1.2 Thermoplastic adhesives -- 7.1.3 Adhesives reinforced with expandable particles -- 7.1.4 Adhesive reinforced with chemical and eletrochemical active agents -- 7.1.5 Tailoring thin material surfaces -- 7.1.6 Alternative solutions -- 7.2 Repairing -- 7.2.1 Metallic-bonded structures -- 7.2.2 Composite-bonded structures -- 7.3 Conclusion -- References -- 8 Joint design -- 8.1 Introduction -- 8.2 Main geometrical configurations -- 8.3 Analytical methods -- 8.3.1 Single-lap joints -- 8.3.2 Volkersen -- 8.3.3 Goland and Reissner -- 8.3.4 Hart-Smith -- 8.3.5 Other analytical models -- 8.3.6 Other joint configurations -- 8.3.6.1 Peel joints -- 8.3.6.2 Scarf and stepped joints -- 8.3.6.3 Butt joints -- 8.4 Failure prediction using numerical methods -- 8.4.1 Continuum mechanics models -- 8.4.2 Fracture mechanics methods -- 8.4.2.1 Maximum tangential stress and strain energy density -- 8.4.2.2 Maximum tangential strain energy density -- 8.4.2.3 Finite fracture mechanics -- 8.4.2.4 Generalized stress intensity factor -- 8.4.3 Continuum damage model -- 8.4.4 Cohesive zone modelling -- 8.4.5 Extended finite element modelling -- 8.4.6 Phase-field approach -- 8.4.7 Hybrid analytical/numerical methods -- 8.5 Parameters affecting joint performance -- 8.5.1 Adhesive layer thickness -- 8.5.2 Overlap length -- 8.5.3 Substrate material and thickness -- 8.5.3.1 Substrate material -- 8.5.3.2 Substrate thickness -- 8.5.4 Effects of joint width and free length -- 8.5.4.1 Joint width. 327 $a8.5.4.2 Free length -- 8.5.5 Effect of geometry and material on the fracture energy of adhesive joints -- 8.6 Optimization of the behaviour of bonded joints -- 8.6.1 Adhesive fillets and adherend modifications -- 8.6.2 Mixed adhesive joints -- 8.6.3 Techniquesfor delamination avoidance in composites -- 8.6.4 Hybrid bonded joints -- 8.7 Conclusion -- References -- 9 Durability -- 9.1 Introduction -- 9.2 Loading conditions -- 9.2.1 Fatigue -- 9.2.1.1 Total fatigue life (S-N) approach -- 9.2.1.2 Fatigue crack growth approach -- 9.2.1.3 Load control versus displacement control tests -- 9.2.2 Creep -- 9.2.2.1 Creep models -- 9.3 Environmental conditions -- 9.3.1 Humidity -- 9.3.1.1 Impact of moisture on mechanical properties -- 9.3.1.2 Cyclic versus constant ageing -- 9.3.1.3 Swelling and residual stresses -- 9.3.2 Temperature -- 9.4 Conclusions -- References -- 10 Case studies -- 10.1 Case study 1 - front header in car body -- 10.2 Case study 2 - high-voltage electric car batteries -- 10.3 Conclusions -- References -- Index -- Back Cover. 330 $aStructural adhesive bonding is a key approach to making cars better and safer while also reducing their environmental impact.Structural Adhesive Bonding for Automotive Applications covers several aspects of bonded joints, including materials selection, design and manufacturing processes, quality control techniques, durability analysis, and repair. 410 0$aWoodhead Publishing Series in Welding and Other Joining Technologies Series 676 $a629.26 700 $aAkhavan-Safar$b Alireza$01077938 701 $aJ.C. Carbas$b Ricardo$01882709 701 $aA.S. Marques$b Eduardo$01882710 701 $ada Silva$b Lucas F. M$0983408 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911048016803321 996 $aStructural Adhesive Bonding for Automotive Applications$94498084 997 $aUNINA