LEADER 00980nam0 22002531i 450 001 UON00129094 005 20231205102748.818 100 $a20020107d1971 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| 1|||| 200 1 $aKrishnamandala$ea devotional theme in Indian art$fWalter M. Spink 210 $aAnn Arbor$cThe University of Michigan, Museum of Art$d1971 215 $a1 v.$d23 cm 620 $aUS$dAnn Arbor (Michigan)$3UONL000025 686 $aSI IX L$cSUBCONT. INDIANO - ARTE - ESPOSIZIONI$2A 700 1$aSPINK$bWalter M.$3UONV003605$0668153 712 $aUniversity of Michigan$3UONV245968$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00129094 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI SI IX L 028 $eSI ARC2047 7 028 996 $aKrishnamandala$91319543 997 $aUNIOR LEADER 06458nam 22007095 450 001 9910300250503321 005 20200705112151.0 010 $a4-431-55864-0 024 7 $a10.1007/978-4-431-55864-4 035 $a(CKB)3710000000532751 035 $a(EBL)4188234 035 $a(SSID)ssj0001597364 035 $a(PQKBManifestationID)16297879 035 $a(PQKBTitleCode)TC0001597364 035 $a(PQKBWorkID)14886207 035 $a(PQKB)10654089 035 $a(DE-He213)978-4-431-55864-4 035 $a(MiAaPQ)EBC4188234 035 $a(PPN)190884452 035 $a(EXLCZ)993710000000532751 100 $a20151208d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA New Direction in Mathematics for Materials Science /$fby Susumu Ikeda, Motoko Kotani 205 $a1st ed. 2015. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2015. 215 $a1 online resource (93 p.) 225 1 $aSpringerBriefs in the Mathematics of Materials,$x2365-6336 ;$v1 300 $aDescription based upon print version of record. 311 $a4-431-55862-4 320 $aIncludes bibliographical references at the end of each chapters. 327 $aPreface; Contents; 1 A Historical View of Materials Science; 1.1 Emergence of Materials Science as an Interdisciplinary Field; 1.2 Classical Fields Within Materials Science; 1.3 Peculiarity of Materials Science and Partnership with Mathematics; References; 2 Influence of Mathematics on Materials Science Upto Date; 2.1 Geometric Structures of Atomic Configurations; 2.1.1 Atomism; 2.1.2 The Miracle Year of 1669; The Emergence of Crystallography and Optocrystallography from Mineralogy; 2.1.3 Quasicrystals; 2.1.4 Aperiodic Tiling and Disordered System; 2.1.5 Graph Modeling for Nano-Materials 327 $a2.1.6 Crystal Lattices and Their Standard Realizations2.2 Quantum Materials; 2.2.1 Electronic Characteristics of Periodic Materials System: Band Theory; 2.2.2 Spin Current; 2.2.3 Integer Quantum Hall Effect (IQHE); 2.2.4 Hofstadter's Butterfly; 2.2.5 Central Limit Theorem for Magnetic Transition Operators; 2.2.6 Topological Insulator; 2.2.7 Non Commutative Bloch Theory; 2.3 Pattern Formation; 2.3.1 Patterns in Equilibrium: Soap Films, Soap Bubbles; 2.3.2 Fundamentals of Crystal Growth; 2.3.3 Reaction--Diffusion Equation; 2.3.4 Mean Curvature Flow to Describe Crystal Growth 327 $a2.3.5 Level Set Method2.3.6 Phase Field Method; 2.4 Other Tools; 2.4.1 Computed Tomography; 2.4.2 Some Other Computational Tools; 2.5 Global Trend to Encourage Mathematics--Materials Science Cooperation; References; 3 Some Specific Examples of Mathematics--Materials Science Collaboration at AIMR; 3.1 Elucidation of Metallic Glass Structure by Computational Homology; 3.2 Application of a Stochastic Model; 3.2.1 Stoichiometry Control Based on a Mathematical Model; 3.2.2 Deformation Analysis of Bulk Metallic Glass Using a Stochastic Model 327 $a3.3 New Geometric Measures for Finite Carbon Nanotubes3.4 Materials Having Network Structures; 3.4.1 Mathematical Technique Predicts Molecular Magnet; 3.4.2 Mixing Time of Molecules Inside of Nanoporous Gold; References; 4 Breakthroughs Based on the Mathematics--Materials Science Collaboration; 4.1 Real Interdisciplinary Integration; 4.2 Organization Promoting Mathematics--Materials Science Collaboration; 4.3 Specific Problems and Applications in the Future; 5 Epilogue; References; Appendix A Supplements to "Quantum Materials" 330 $aThis book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics?materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies?for example, computational homology applied to structural analysis of glassy materials, stochastic models for the formation process of materials, new geometric measures for finite carbon nanotube molecules, mathematical technique predicting a molecular magnet, and network analysis of nanoporous materials. The details of these works will be shown in the subsequent volumes of this SpringerBriefs in the Mathematics of Materials series by the individual authors. The posterior section of the book presents how breakthroughs based on mathematics?materials science collaborations can emerge. The authors' argument is supported by the experiences at the Advanced Institute for Materials Research (AIMR), where many researchers from various fields gathered and tackled interdisciplinary research. 410 0$aSpringerBriefs in the Mathematics of Materials,$x2365-6336 ;$v1 606 $aMathematical physics 606 $aTopology 606 $aChemometrics 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 606 $aMath. Applications in Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C17004 615 0$aMathematical physics. 615 0$aTopology. 615 0$aChemometrics. 615 14$aMathematical Applications in the Physical Sciences. 615 24$aTopology. 615 24$aMath. Applications in Chemistry. 676 $a510 700 $aIkeda$b Susumu$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755715 702 $aKotani$b Motoko$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300250503321 996 $aA New Direction in Mathematics for Materials Science$92536261 997 $aUNINA LEADER 00908nam0-2200289 --450 001 9911045626603321 005 20251215112456.0 010 $a9783111625591 100 $a20251215d2025----kmuy0itay5050 ba 101 2 $aeng$agrc 102 $aDE 105 $a 001yy 200 1 $aFriendship and otherness in Lucian's Toxaris$ea literary commentary$fLaura Bottenberg 210 $aBerlin$aBoston$cDe Gruyter$d2025 215 $aVIII, 392 p.$d24 cm 225 1 $aUntersuchungen zur antiken Literatur und Geschichte$v162 300 $aTesto originale con traduzione a fronte 676 $a883.01 700 0$aLucianus$0159729 702 1$aBottenberg,$bLaura 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911045626603321 952 $aP2B 600 UALG 162$b2025/4200$fFLFBC 959 $aFLFBC 996 $aFriendship and otherness in Lucian's Toxaris$94473503 997 $aUNINA