LEADER 11771nam 22006133 450 001 9911045228303321 005 20250416110116.0 010 $a9780128175088 010 $a0128175087 035 $a(MiAaPQ)EBC31500238 035 $a(Au-PeEL)EBL31500238 035 $a(CKB)32322830400041 035 $a(Exl-AI)31500238 035 $a(FR-PaCSA)88965757 035 $a(FRCYB88965757)88965757 035 $a(OCoLC)1443082472 035 $a(EXLCZ)9932322830400041 100 $a20240624d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Materials for Battery Separators 205 $a1st ed. 210 1$aSan Diego :$cElsevier,$d2024. 210 4$dİ2024. 215 $a1 online resource (444 pages) 311 08$a9780128175071 311 08$a0128175079 327 $aFront Cover -- Advanced Materials for Battery Separators -- Advanced Materials for Battery Separators -- Copyright -- Contents -- Contributors -- Preface -- 1 - Battery energy storage systems: A methodical enabler of reliable power -- 1.1 Introduction -- 1.2 Performance characteristics -- 1.2.1 Overall expenditures -- 1.2.2 Potential parameters -- 1.2.2.1 Energy capacity and power rating -- 1.2.2.2 Volumetric and gravimetric energy and power density -- 1.2.2.3 Autonomy -- 1.2.2.4 Response time -- 1.2.2.5 Operating temperature -- 1.2.2.6 Self-discharge rate -- 1.2.2.7 Round-trip efficiency -- 1.2.2.8 Depth of discharge -- 1.2.2.9 Lifetime -- 1.2.2.10 Spatial requirement -- 1.2.2.11 Recharge time -- 1.2.2.12 Memory effect -- 1.2.2.13 Recyclability -- 1.2.2.14 Scalability and transportability -- 1.2.2.15 Technical maturity -- 1.2.2.16 Environmental impact -- 1.3 Potential applications -- 1.3.1 Mobile applications -- 1.3.2 Transportation applications -- 1.3.2.1 Conventional vehicles -- 1.3.2.2 Electric vehicles -- 1.3.2.3 Fuel cell vehicles -- 1.3.2.4 Hybrid vehicles -- 1.3.3 Stationary applications -- 1.4 Battery energy storage principles -- 1.4.1 Lead-acid -- 1.4.2 Alkaline -- 1.4.3 Metal-air -- 1.4.4 Sodium beta -- 1.4.5 Lithium-ion -- 1.5 Conclusions -- References -- 2 - Separators: An essential barrier between electrodes -- 2.1 Introduction -- 2.2 General principles -- 2.2.1 Permeability -- 2.2.2 Porosity -- 2.2.3 Pore size -- 2.2.4 Tortuosity -- 2.2.5 Thickness -- 2.2.6 Chemical stability -- 2.2.7 Thermal stability -- 2.2.8 Mechanical strength -- 2.3 Separators for lead-acid batteries -- 2.3.1 Flooded automotive batteries -- 2.3.1.1 Polyethylene separators -- 2.3.1.2 Sintered PVC separators -- 2.3.1.3 Cellulosic separators -- 2.3.1.4 Glass fiber leaf separators -- 2.3.1.5 Synthetic wood pulp/glass mat separators. 327 $a2.3.2 Absorptive glass mat separators for valve-regulated lead-acid automotive batteries -- 2.3.3 Flooded industrial batteries -- 2.3.3.1 Polyethylene separators -- 2.3.3.2 Rubber separators -- 2.3.3.3 Microporous PVC separators -- 2.3.3.4 Phenol-formaldehyde-resorcinol separators -- 2.3.4 VRLA industrial batteries -- 2.3.4.1 AGM separators -- 2.3.4.2 VRLA gel batteries -- 2.4 Separators for Li-ion batteries -- 2.4.1 Microporous polymer separators -- 2.4.2 Nonwoven fabric mat separators -- 2.4.3 Inorganic composite separators -- 2.5 Separators for nickel-metal hydride and nickel-cadmium batteries -- 2.6 Primary cells -- 2.7 Conclusions -- References -- I - Separators for non-aqueous batteries -- 3 - Introduction to separators for nonaqueous batteries -- 3.1 Introduction -- 3.1.1 Classification of nonaqueous electrolyte systems -- 3.2 Nonaqueous battery systems -- 3.2.1 Lithium-ion battery -- 3.2.2 Lithium-sulfur battery -- 3.2.2.1 Separators for lithium-sulfur batteries -- 3.2.3 Lithium-air battery -- 3.2.4 Solid-state electrolytes/membranes for lithium-air batteries -- 3.2.5 Designing ion transport pathways for lithium-ion battery separators -- 3.3 Conclusion -- Acknowledgments -- References -- 4 - Separators for lithium ion batteries -- 4.1 Introduction -- 4.2 Properties and characterization methods of separators -- 4.2.1 Fundamental physical evaluation -- 4.2.1.1 Thickness -- 4.2.1.2 Morphology -- 4.2.1.3 Pore size and pore distribution -- 4.2.1.4 Porosity -- 4.2.1.5 Permeability (Gurley value) -- 4.2.1.6 Mechanical properties -- 4.2.2 Thermal stability -- 4.2.2.1 Thermal shrinkage property -- 4.2.2.2 Thermal shutdown temperature -- 4.2.2.3 Melt fracture temperature -- 4.2.2.4 Decomposition temperature -- 4.2.3 Chemical characterization -- 4.2.3.1 Chemical stability -- 4.2.3.2 Wettability with liquid electrolyte and wetting rate. 327 $a4.2.3.3 Electrolyte uptake ability -- 4.2.3.4 Molecular weight -- 4.2.3.5 Structure and composition -- 4.2.4 Electrochemical characterization -- 4.2.4.1 Electrochemical stability window -- 4.2.4.2 Lithium ionic conductivity -- 4.2.4.3 Interfacial compatibility -- 4.2.4.4 Lithium ion transference number -- 4.2.4.5 Mac-Mullin number -- 4.2.4.6 Tortuosity -- 4.3 Preparation methods of separator -- 4.3.1 Dry process -- 4.3.2 Wet process -- 4.3.3 Solution casting technique -- 4.3.4 Phase inversion method -- 4.3.5 Electrospinning method -- 4.3.6 Dip coating/coating method -- 4.3.7 Other methods -- 4.4 Composition of separator materials -- 4.4.1 Polyolefin -- 4.4.2 Fluoropolymer -- 4.4.3 Polyimide -- 4.4.4 Polyetherimide -- 4.4.5 Polyethylene terephthalate -- 4.4.6 Polyaniline -- 4.4.7 Biomass cellulose -- 4.4.8 Polysulfonamide fiber -- 4.4.9 Poly(vinyl alcohol) -- 4.4.10 Other polymers -- 4.5 Separator types -- 4.5.1 Nongelled polymer separator -- 4.5.2 Gelled polymer separator -- 4.5.2.1 Microporous pure polymer separator -- Self-supported separator -- Supported separator -- 4.5.2.2 Polymer ceramic separator -- Self-supported polymer ceramic separator -- Supported polymer ceramic separator -- 4.5.2.3 Conventional ceramic separator -- 4.6 Critical discussion -- 4.7 Conclusion and outlook -- Acknowledgments -- References -- 5 - Advanced separators for lithium-sulfur batteries -- 5.1 Introduction to lithium-sulfur batteries -- 5.2 Mechanism of charge-discharge -- 5.3 Bottlenecks of Li-S cells -- 5.3.1 Positive electrode issues -- 5.3.2 Polysulfide shuttle and self-discharge -- 5.3.3 Poor interfacial properties with lithium metal anode -- 5.4 The polysulfide shuttle phenomenon -- 5.4.1 Chemistry of shuttling and self-discharge -- 5.4.2 Development and types -- 5.4.3 Mechanism of permselectivity -- 5.4.4 A glimpse of different types of permselective separators. 327 $a5.5 Performance evaluation of separators -- 5.5.1 Basic characterization -- 5.5.1.1 Electrolyte uptake and porosity -- 5.5.1.2 Shrinkage test -- 5.5.2 Evaluation of permselectivity -- 5.5.2.1 Visual crossover and zeta potential analysis -- 5.5.2.2 Postcycling analysis -- 5.5.3 Electrochemical impedance spectroscopy -- 5.5.4 Quantitative measurement of shuttle current -- 5.6 Future outlook -- 5.7 Conclusions -- References -- 6 - Lithium ion conducting membranes for lithium-air batteries -- 6.1 Introduction -- 6.2 Nonaqueous lithium-air battery -- 6.3 Aqueous lithium-air battery -- 6.4 Solid-state lithium-air batteries -- 6.5 Summary -- References -- 7 - Designing of ion transport pathways in separator for lithium-ion batteries -- 7.1 Introduction -- 7.2 Experimental and theoretical methods -- 7.2.1 Experimental method -- 7.2.2 Theoretical derivations of inherent dynamic values of ions -- 7.3 Evaluation of polyethylene separator membranes -- 7.3.1 Peak assignment for the species in separator membrane -- 7.3.2 Comparison of fundamental dynamic values of free electrolyte solutions -- 7.3.3 Comparison of dynamic values of solutions in PE separators -- 7.4 Evaluation of polypropylene separator membranes -- 7.4.1 Comparison of dynamic values of solution in PP separators -- 7.4.2 Effect of pathway tortuosity on dynamic values -- 7.5 Evaluation of specific restricted diffusion -- 7.6 Summary -- References -- II - Separators for aqueous batteries -- 8 - Introduction to separators for aqueous batteries -- 8.1 Introduction -- 8.2 Alkaline zinc manganese dioxide (Zn||MnO2) batteries -- 8.2.1 Separators for Zn||MnO2 batteries -- 8.3 Redox flow batteries -- 8.4 Conclusion -- Acknowledgments -- References -- 9 - Alkaline zinc-MnO2 battery separators -- 9.1 Introduction -- 9.1.1 Alkaline Zn/MnO2 battery -- 9.1.2 Electrode reactions -- 9.2 Separator properties. 327 $a9.2.1 Ionic transport through the separators -- 9.2.2 Blocking of zincate crossover -- 9.2.3 Improvement of OH? exchange -- 9.2.4 Dendrites prevention and resistance to perforation -- 9.3 Nonwoven separators -- 9.4 Gel polymer electrolytes as separators for alkaline batteries -- 9.4.1 Properties of gel polymer electrolytes -- 9.4.2 PVA and its derivatives -- 9.4.2.1 Cross-linking methods -- 9.4.3 PAA and its derivatives -- 9.4.4 PAM and its derivatives -- 9.4.5 PEO and its derivatives -- 9.4.6 Copolymerized GPEs -- 9.4.7 Biobased GPEs -- 9.4.7.1 Cellulose and its derivatives -- 9.4.7.2 Gelatin-based GPEs -- 9.4.7.3 Chitosan-based GPEs -- 9.5 Summary and perspectives -- References -- 10 - Redox flow batteries -- 10.1 Need for energy storage -- 10.2 Redox flow batteries overview -- 10.2.1 Advantages -- 10.2.2 Disadvantages -- 10.2.3 Operating principle of a redox flow battery -- 10.2.4 Present RFB technologies -- 10.2.4.1 Aqueous redox flow battery -- 10.2.4.2 Nonaqueous redox flow batteries -- 10.2.4.3 Membrane for redox flow batteries -- Membranes for aqueous-type RFBs -- Membranes for nonaqueous type RFBs -- 10.3 Future perspectives -- References -- III - Theoretical predictions and future challenges -- 11 - Theoretical simulations of lithium ion micro- and macrobatteries -- 11.1 Introduction -- 11.2 Theoretical models for lithium ion batteries -- 11.2.1 Computer simulations applied to lithium ion batteries -- 11.3 Lithium ion micro- and macrobatteries -- 11.3.1 Theoretical simulations of lithium ion micro- and macrobatteries -- 11.3.2 Experimental results on lithium ion microbatteries -- 11.4 Conclusions -- Nomenclature section -- flink1 -- flink2 -- flink3 -- Acknowledgments -- References -- 12 - New opportunities and challenges of battery separators -- 12.1 Introduction -- 12.2 Polymer-based separator for lithium ion batteries. 327 $a12.2.1 Thermal stability. 330 $aThis book, 'Advanced Materials for Battery Separators,' is a comprehensive guide that explores the development and application of advanced materials for battery separators. Edited by Sabu Thomas and a team of international experts, it delves into various types of batteries, including lithium-ion, lithium-sulfur, and redox flow batteries, among others. The book highlights the importance of separators as critical components ensuring battery efficiency and safety. It discusses the properties, preparation methods, and performance evaluation of different separator materials. The work aims to provide researchers and professionals in the field of energy storage and materials science with current insights into the challenges and innovations in battery separator technology.$7Generated by AI. 606 $aLithium ion batteries$7Generated by AI 606 $aEnergy storage$7Generated by AI 615 0$aLithium ion batteries 615 0$aEnergy storage 676 $a621.312423 700 $aThomas$b Sabu$0851308 701 $aRouxel$b Didier$01859999 701 $aKalarikkal$b Nandakumar$01790703 701 $aKottathodi$b Bicy$01860000 701 $aJ Maria$b Hanna$01860001 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911045228303321 996 $aAdvanced Materials for Battery Separators$94464435 997 $aUNINA