LEADER 01397nam a2200289 i 4500 001 991002234109707536 005 20020507161613.0 008 000504s1992 it ||| | ita 020 $a8814030065 035 $ab11627724-39ule_inst 035 $aLE02733029$9ExL 040 $aDip.to Studi Giuridici$bita 082 0 $a342.45 084 $aAM-VI/B 245 12$aI rapporti fra cittadini e istituzioni nelle recenti leggi di riforma delle autonomie locali e del procedimento amministrativo :$batti del Convegno tenutosi a Milano il 14 gennaio 1991 260 $aMilano :$bA. Giuffrč,$c1992 300 $a155 p. ;$c24 cm. 490 0 $aQuaderni dell'Istituto giuridico, UniversitA degli studi di Milano, Facoltą di scienze politiche ;$v4 500 $aTit. sul dorso: I rapporti fra cittadini e istituzioni 740 2 $aI rapporti fra cittadini e istituzioni 907 $a.b11627724$b01-03-17$c02-07-02 912 $a991002234109707536 945 $aLE027 AM-VI/B 2$g1$i2027000193769$lle027$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1184615x$z02-07-02 945 $aLE027 AM-VI/B 3$g2$i2027000193776$lle027$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11846161$z02-07-02 996 $aRapporti fra cittadini e istituzioni nelle recenti leggi di riforma delle autonomie locali e del procedimento amministrativo$9577087 997 $aUNISALENTO 998 $ale027$b01-01-00$cm$da $e-$fita$git $h2$i2 LEADER 02722oam 2200577I 450 001 9910969430303321 005 20251117031542.0 010 $a0-429-15423-2 010 $a1-4987-2844-8 024 7 $a10.1201/b19279 035 $a(CKB)3710000000478367 035 $a(EBL)4003224 035 $a(SSID)ssj0001552715 035 $a(PQKBManifestationID)16171985 035 $a(PQKBTitleCode)TC0001552715 035 $a(PQKBWorkID)13687752 035 $a(PQKB)10053875 035 $a(MiAaPQ)EBC4003224 035 $a(OCoLC)921985891 035 $a(EXLCZ)993710000000478367 100 $a20180331h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aConceptual data modeling and database design $ea fully algorithmic approach. Volume 1, The shortest advisable path /$fChristian Mancas, Mathematics and Computer Science Department, Ovidius State University, Constanta, Romania, Computer Science 205 $a1st ed. 210 1$aOakville, ON :$cApple Academic Press,$d[2016] 210 4$d©2016 215 $a1 online resource (662 p.) 300 $aDescription based upon print version of record. 311 08$a1-77188-124-0 320 $aIncludes bibliographical references. 327 $a1. Data, information and knowledge in the computer era -- 2. The quest for data adequacy and simplicity : the entity-relationship data model (E-RDM) -- 3. The quest for data independence, minimal plausibility, and formalization : the relational data model (RDM) -- 4. Relational schemas implementation and reverse engineering -- 5. Conclusion. 330 $aThis new book aims to provide both beginners and experts with a completely algorithmic approach to data analysis and conceptual modeling, database design, implementation, and tuning, starting from vague and incomplete customer requests and ending with IBM DB/2, Oracle, MS SQL Server, or Access-based software applications. A rich panoply of solutions to actual useful data sub-universes-such as business, university, public and home library, geography, and history-is provided, constituting a powerful library of examples. 517 3 $aShortest advisable path 606 $aComputer algorithms 606 $aConceptual structures (Information theory) 606 $aDatabase design 615 0$aComputer algorithms. 615 0$aConceptual structures (Information theory) 615 0$aDatabase design. 676 $a005.74/3 700 $aMancas$b Christian$01881637 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910969430303321 996 $aConceptual data modeling and database design$94496368 997 $aUNINA LEADER 11184oam 22005412 450 001 9911044027603321 005 20260129123727.0 010 $a0-443-33396-3 035 $a(MiAaPQ)EBC32253905 035 $a(Au-PeEL)EBL32253905 035 $a(CKB)40096532200041 035 $a(OCoLC)1531323314 035 $a(EXLCZ)9940096532200041 100 $a20250502d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdditive manufacturing of magnetic materials $etechniques, materials, applications, opportunities and challenges /$fedited by Moataz Attallah, Abdelmoez Hussein 205 $a1st ed. 210 1$aChantilly :$cElsevier,$d2025. 210 4$d©2025. 215 $a1 online resource (664 pages) 225 1 $aAdditive Manufacturing Materials and Technologies Series 311 08$a0-443-33395-5 327 $aFront Cover -- Additive Manufacturing of Magnetic Materials -- Copyright Page -- Contents -- List of contributors -- Acknowledgments -- Introduction -- 1 Additive manufacturing -- 1 Fundamentals of additive manufacturing techniques -- 1.1 Introduction -- 1.2 Laser powder bed fusion -- 1.3 Electron beam powder bed fusion -- 1.4 Direct energy deposition and laser metal deposition with wire -- 1.4.1 Direct energy deposition technology -- 1.4.2 Laser metal deposition with wire -- 1.4.3 Process variables and their influence on microstructure and mechanical properties -- 1.5 Metal binder jetting -- 1.6 Cold spray -- 1.7 Conclusion -- References -- 2 Additive manufacturing of soft magnets -- 2 Laser powder bed fusion of µ-metal for magnetic-shielding applications -- 2.1 Introduction -- 2.2 Overview of Ni-Fe alloys -- 2.2.1 Magnetic shielding: mechanism and applications -- 2.2.1.1 Active magnetic shielding -- 2.2.1.2 Passive magnetic shielding -- 2.2.2 Magnetic properties of soft magnets -- 2.2.2.1 Domain structure and Hysteresis loop -- 2.2.2.2 Magnetic anisotropy and magnetocrystalline energy -- 2.2.3 Development of Mu-metal alloy -- 2.3 The industry of magnetic shielding: global market and challenges -- 2.4 Laser powder bed fusion of µ-metal -- 2.4.1 Microstructure development -- 2.4.1.1 Densification -- 2.4.1.2 Cracking mechanism -- 2.4.1.3 Texture and microstructure control -- 2.4.2 Magnetic properties of laser powder bed fusion µ-metal -- 2.4.3 Shielding effect -- 2.4.4 Mechanical properties -- 2.5 Conclusion -- References -- 3 Additive manufacturing of Fe-Si (silicon steel) -- 3.1 Introduction -- 3.2 (Fe-Si) Silicon-iron alloys -- 3.3 Additive manufacturing of Fe-Si alloys -- 3.4 Laser powder-bed fusion-selective laser melting-direct laser metal sintering -- 3.5 Chemical composition variations of Fe-Si via laser powder bed fusion. 327 $a3.6 Electron beam melting-electron powder-bed fusion of Fe-Si -- 3.7 Direct energy deposition-laser metal deposition of Fe-Si -- 3.8 Binder jetting of Fe-Si -- 3.9 Conclusions -- References -- 4 Additive manufacturing of functionally graded magnetic materials -- 4.1 Introduction -- 4.2 Additive manufacturing techniques for functionally graded materials and functionally graded magnetic materials -- 4.2.1 Direct energy deposition laser beam -- 4.2.2 Powder bad fusion laser beam -- 4.3 State of the art of functionally graded soft magnetic materials -- 4.3.1 Functionally graded Fe-Si magnetic alloys -- 4.3.2 Functionally graded Finemet-based alloys -- 4.3.3 Functionally graded Co-Fe, Ni-Fe and Co-Fe/Ni-Fe magnetic materials -- 4.3.4 Functionally graded Fe-Co-Ni magnetic materials -- 4.3.5 Functionally graded complex concentrated magnetic alloys -- 4.3.6 Other functionally graded magnetic materials -- 4.4 Summary and outlook -- Acknowledgments -- References -- 5 Additively manufactured magnetic polymer composite materials -- 5.1 Introduction -- 5.2 Principles of magnetic polymer composites -- 5.2.1 Overview -- 5.2.2 Types of magneto-responsive composites based on the filler particles -- 5.2.3 Working mechanism of magneto-responsive composites -- 5.2.3.1 Soft-magnetic magneto-responsive composites -- 5.2.3.2 Hard-magnetic magneto-responsive composites -- 5.2.3.3 Superparamagnetic magneto-responsive composites -- 5.3 Additive manufacturing of magneto-responsive composites -- 5.3.1 Direct ink writing -- 5.3.2 Material jetting -- 5.3.2.1 Low-viscosity jetting -- 5.3.2.2 High-viscosity jetting -- 5.3.3 Vat-photopolymerisation methods (SLA/DLP/TPP) -- 5.3.4 Fused deposition modeling -- 5.3.5 Selective laser sintering -- 5.3.6 Comparison of additive manufacturing methods -- 5.4 Additively manufactured magnetic actuator devices -- 5.5 Conclusions. 327 $aAcknowledgments -- Abbreviations and nomenclature -- References -- 6 Additive manufacturing of amorphous soft magnetic materials -- 6.1 Introduction -- 6.1.1 Additive manufacturing of bulk metallic glasses -- 6.1.1.1 Laser powder-bed fusion of bulk metallic glasses -- 6.1.1.1.1 Thermal development during laser powder-bed fusion process -- 6.1.1.1.2 Effect of process parameters on microstructure and crystallization -- 6.1.1.1.3 Overview -- 6.1.1.2 Directed energy deposition of bulk metallic glasses -- 6.1.1.3 Electron beam melting -- 6.1.1.4 Laser foil printing -- 6.1.1.5 Thermal spraying additive manufacturing -- 6.1.1.6 Fused filament fabrication -- 6.1.2 Importance of amorphous soft-magnetic materials -- 6.2 Additive manufacturing of amorphous soft-magnetic materials -- 6.2.1 Laser powder-bed fusion of amorphous magnetic alloys -- 6.2.1.1 Magnetic properties of laser powder-bed fusion-processed amorphous magnetic alloys -- 6.2.2 Directed energy deposition of amorphous magnetic materials -- 6.2.2.1 Magnetic properties of directed energy deposition-processed amorphous magnetic alloys -- 6.3 Future trends and challenges -- References -- 3 Additive manufacturing of Hard/permanent magnets -- 7 Additive manufacturing of Nd-Fe-B hard magnets -- 7.1 Introduction -- 7.1.1 Nd-Fe-B magnets -- 7.1.2 Nd-Fe-B magnets using powder bed fusion-laser beam -- 7.2 Nd-Fe-B permanent magnetic material -- 7.2.1 Basic properties of Nd2Fe14B -- 7.2.2 Remanence and coercivity: intrinsic versus extrinsic properties -- 7.2.2.1 Intrinsic properties of RE-Fe-B permanent magnets -- 7.2.2.2 Extrinsic properties of RE-Fe-B permanent magnets -- 7.2.3 Microstructure and properties of conventionally manufactured and AM Nd-Fe-B magnets -- 7.2.3.1 Microstructure of the Nd-Fe-B magnets -- 7.2.3.2 Factors influencing the coercivity of Nd-Fe-B permanent magnets. 327 $a7.2.3.2.1 The effects of grain size and aspect ratio on coercivity -- 7.2.3.2.2 Effect of the grain boundary phase and morphology on coercivity -- 7.2.3.2.3 The effects of crystal alignment of the grains on coercivity -- 7.3 Powder bed fusion-laser beam Nd-Fe-B -- 7.3.1 Using PBF-LB to produce Nd-Fe-B -- 7.3.2 Microstructure of the powder bed fusion-laser beam Nd-Fe-B materials -- 7.3.3 Post-process treatments on Nd-Fe-B -- 7.3.3.1 Heat-treatment -- 7.3.3.2 Infiltration -- 7.3.4 The application of PBF-LB Nd-Fe-B in electrical machines -- 7.4 Summary -- 7.4.1 Conclusions -- 7.4.2 Proposed future work -- References -- 4 Additive manufacturing of magnetocalorics and shape memory alloys -- 8 Additive manufacturing of NiMn-based Heusler alloys for magnetic refrigeration applications -- 8.1 Introduction -- 8.2 Different catergories of NiMn-based Heusler alloy -- 8.3 Conventional manufacturing techniques for NiMn-based Heusler alloy -- 8.3.1 Single-crystal alloy -- 8.3.1.1 Bridgman method -- 8.3.1.2 Czochralski method -- 8.3.1.3 Zone melting -- 8.3.2 Polycrystals alloy -- 8.3.2.1 Stray polycrystals -- 8.3.2.2 Oriented polycrystals -- 8.3.2.2.1 Suction casting -- 8.3.2.2.2 Directional solidification -- 8.3.2.2.3 Melt-spun ribbons -- 8.4 Additive manufacturing of NiMn-based Heusler alloys -- 8.4.1 Typical additive manufacturing technologies -- 8.4.2 Research progress of the MAMed NiMn-based Heusler Alloy -- 8.5 Defects in AM of NiMn-based Heusler Alloy -- 8.5.1 The defects in laser powder bed fusion (L-PBF) -- 8.5.1.1 Geometry-related defects -- 8.5.1.2 Surface integrity-related defects -- 8.5.1.3 Microstructural defects -- 8.5.2 The defects in metal binder jetting (BJ) -- 8.5.2.1 Effect of powder size distribution -- 8.5.2.2 Effect of binder residue -- 8.5.3 The defects in laser-directed energy deposition (L-DED) -- 8.5.3.1 Residual stresses and distortion. 327 $a8.5.3.2 Porosity -- 8.5.3.3 Cracking and delamination -- 8.6 The metallurgy of AM NiMn-based Heusler Alloy -- 8.6.1 The powder for AM NiMn-based alloy -- 8.6.2 The microstructure of as-printed NiMn-based alloy -- 8.7 The performance of AM NiMn-based Heusler Alloy -- 8.7.1 The performance of as-fabricated MAM NiMn-based Heusler Alloy -- 8.7.2 The performance of heat-treated MAM NiMn-based Heusler Alloy -- 8.8 Conclusion -- References -- 9 Additive manufacturing of magnetic shape memory alloys -- 9.1 Introduction -- 9.2 Overview of magnetic shape memory alloys -- 9.2.1 Alloy characteristics -- 9.2.1.1 Chemical composition, crystal structure, and phase transformations -- 9.2.1.2 Magnetic properties and magnetocrystalline anisotropy -- 9.2.1.3 Functional properties -- 9.2.1.4 Magnetic shape memory effect -- 9.2.1.5 Magnetic torque-induced bending -- 9.2.1.6 Field-induced phase transformations -- 9.2.1.7 Other functional properties -- 9.2.2 Conventional manufacturing -- 9.2.2.1 Single crystals -- 9.2.2.2 Polycrystals -- 9.2.2.3 Postprocessing -- 9.2.3 Applications -- 9.3 Additive manufacturing of magnetic shape memory alloys -- 9.3.1 Extrusion-based additive manufacturing of Ni-Mn-Ga -- 9.3.1.1 Processing steps -- 9.3.1.2 Material properties and characteristics -- 9.3.2 Binder jetting of Ni-Mn-Ga -- 9.3.2.1 Processing steps -- 9.3.2.2 Material properties and characteristics -- 9.3.3 Laser-based directed energy deposition of Ni-Mn-Ga -- 9.3.3.1 Processing steps -- 9.3.3.2 Material properties and characteristics -- 9.3.4 Laser powder bed fusion of Ni-Mn-Ga -- 9.3.4.1 Processing steps -- 9.3.4.2 Material properties and characteristics -- 9.4 Future research directions and emerging trends -- 9.4.1 In situ monitoring and modeling -- 9.4.1.1 Exploration of new alloy compositions -- 9.4.1.2 In situ alloying -- 9.4.2 Other research gaps -- 9.5 Summary. 327 $aReferences. 330 $aAdditive Manufacturing of Magnetic Materials: Techniques, Materials, Applications, Opportunities and Challenges outlines different 3D printing techniques that can be employed to create an array of different magnetic materials, along with how these materials can be effectively applied. 410 0$aAdditive Manufacturing Materials and Technologies. 606 $aAdditive manufacturing 606 $aMagnetic materials 615 0$aAdditive manufacturing. 615 0$aMagnetic materials. 676 $a621.34 702 $aAttallah$b Moataz 702 $aHussein$b Abdelmoez 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911044027603321 996 $aAdditive Manufacturing of Magnetic Materials$94460830 997 $aUNINA