LEADER 02996nam 2200529 450 001 9910821331603321 005 20220819004647.0 010 $a0-8218-8164-7 010 $a0-8218-4649-3 035 $a(CKB)3240000000070010 035 $a(EBL)3113324 035 $a(SSID)ssj0000629297 035 $a(PQKBManifestationID)11393257 035 $a(PQKBTitleCode)TC0000629297 035 $a(PQKBWorkID)10719224 035 $a(PQKB)10290852 035 $a(MiAaPQ)EBC3113324 035 $a(RPAM)15514853 035 $a(PPN)197108121 035 $a(EXLCZ)993240000000070010 100 $a20081107h20092009 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aErgodic theory $eProbability and Ergodic Theory Workshops, February 15-18, 2007, February 14-17, 2008, University of North Carolina, Chapel Hill /$fIdris Assani, editor 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2009] 210 4$d©2009 215 $a1 online resource (171 p.) 225 1 $aContemporary mathematics,$v485$x0271-4132 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references. 327 $aContents -- Preface -- Injectivity of the Dubins-Freedman construction of random distributions -- A maximal inequality for the tail of the bilinear Hardy-Littlewood function -- Almost sure convergence of weighted sums of independent random variables -- Recurrence, ergodicity and invariant measures for cocycles over a rotation -- 1. Invariant measures, regularity of a cocycle -- 2. Growth of the ergodic sums over a rotation, application to recurrence -- 3. Examples of ergodic BV Rd-cocycles -- 4. Examples of non-regular cocycles -- 5. Appendix : A Diophantine property for (I?±, I?²) -- References -- Examples of recurrent or transient stationary walks in Rd over a rotation of T2 -- 1. A sufficient condition of recurrence for stationary walks -- 2. Series with small denominators -- 3. Growth in norm ll ll2 of the ergodic sums and recurrence -- 4. An example of transient cocycle -- References -- A short proof of the unique ergodicity of horicyclic flows -- A-periodic order via dynamical systems: Diffraction for sets of finite local complexity -- Laws of iterated logarithm for weighted sums of iid random variables -- Homeomorphic Bernoulli trial measures and ergodic theory -- Distinguishing transformations by averaging methods -- Some open problems. 410 0$aContemporary mathematics,$v485$x0271-4132 606 $aErgodic theory$vCongresses 615 0$aErgodic theory 676 $a515/.48 702 $aAssani$b Idris 712 12$aChapel Hill Ergodic Theory Workshop$f(2008 :$eUniversity of North Carolina, Chapel Hill), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910821331603321 996 $aErgodic theory$980545 997 $aUNINA LEADER 00993nam0-2200301 --450 001 9911038627803321 005 20251128185128.0 100 $a20251112d1950----kmuy0itay5050 ba 101 0 $afre 102 $aCH 105 $aaf 001yy 200 1 $a<>défense des plantes cultivées$fHenry Faes, Marc Staehelin, Paul Bovey$gPréface de R. Gallay 205 $a3. éd. revue et augmentée 210 $aLausanne$cLibrairie Payot$d1950 215 $a655 p., 128 p. di tav.$cill.$d22 cm 300 $aSul verso del front.: Ouvrage publié par l'Association suisse des professeurs d'agriculture. 610 0 $aPiante coltivate 676 $a633$v17$zita 700 1$aFaes,$bHenry$087652 701 1$aStaehelin,$bMarc$087654 701 1$aBovey,$bPaul$087653 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911038627803321 952 $aE ARB 403$b03/4919/25$fFAGBC 959 $aFAGBC 996 $aDéfense des plantes cultivées$94454182 997 $aUNINA