LEADER 04436nam 22006735 450 001 9911031674303321 005 20251001130533.0 010 $a3-031-99212-1 024 7 $a10.1007/978-3-031-99212-4 035 $a(CKB)41520794700041 035 $a(MiAaPQ)EBC32323590 035 $a(Au-PeEL)EBL32323590 035 $a(DE-He213)978-3-031-99212-4 035 $a(EXLCZ)9941520794700041 100 $a20251001d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProgress in Lorentzian Geometry $eGeLoMer 2024, Mérida, México, January 29?February 2 /$fedited by Waldemar Barrera, Jónatan Herrera, Juan Pablo Navarrete, Matias Navarro, Oscar Palmas, Didier A. Solis 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (809 pages) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v512 311 08$a3-031-99211-3 327 $aPreface -- Semi Riemannian Nearly Khaler G X G -- Global flatness for asymptotically at spacetimes -- Isometric lightlike immersions in R x Qn+1, c,1 -- The vacuum weighted Einstein field equations on pure radiation waves -- Conformally Einstein Lorentzian Lie groups -- Causal ladder of Finsler spacetimes with a cone Killing vector field -- A geometric reduction method for some fully nonlinear first order PDEs on semi-Riemannian manifolds -- Mean curvature, singularities and time functions in cosmology -- C0-inextendibility of FLRW spacetimes within a subclass of axisymmetric spacetimes -- Spacelike causal boundary at nite distance and continuous extension of the metric: second preliminary report -- From Lorentzian manifolds to signature-type change with singular transverse metrics -- Constant angle surfaces in I x f R2,1 with a null principal direction -- Vacuum cosmological spacetimes without CMC Cauchy surfaces -- On pseudo-parallel surfaces -- Introduction to Kundt spaces -- Topologies on the future causal completion -- On the application of Lorentz-Finsler geometry to model wave propagation -- The ladder of Finsler-type objects and their variational problems on spacetimes -- Compact plane waves with parallel Weyl curvature -- Author Index. 330 $aThis proceedings volume gathers selected, revised papers presented at the XI International Meeting on Lorentzian Geometry (GeLoMer 2024), held at the Autonomous University of Yucatán, Mexico, from January 29 to February 2, 2024. Lorentzian geometry provides the mathematical foundation for Einstein's theory of relativity. It incorporates aspects from different branches of mathematics, such as differential geometry, partial differential equations, and mathematical analysis, to name a few. This volume includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference, which is seen as a benchmark for those working in Lorentz geometry due to its relevance. Given its scope, the book will be of interest to both young and experienced mathematicians and physicists whose research involves general relativity and semi-Riemannian geometry. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v512 606 $aGeometry, Differential 606 $aGeneral relativity (Physics) 606 $aGravitation 606 $aMathematical physics 606 $aDifferential Geometry 606 $aGeneral Relativity 606 $aGravitational Physics 606 $aMathematical Methods in Physics 615 0$aGeometry, Differential. 615 0$aGeneral relativity (Physics) 615 0$aGravitation. 615 0$aMathematical physics. 615 14$aDifferential Geometry. 615 24$aGeneral Relativity. 615 24$aGravitational Physics. 615 24$aMathematical Methods in Physics. 676 $a516.36 700 $aBarrera$b Waldemar$01850183 701 $aHerrera$b Jónatan$01850184 701 $aNavarrete$b Juan Pablo$0521831 701 $aNavarro$b Matias$01850185 701 $aPalmas$b Oscar$01850186 701 $aSolis$b Didier A$01850187 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911031674303321 996 $aProgress in Lorentzian Geometry$94443127 997 $aUNINA