LEADER 02256nam 2200577 450 001 996466541803316 005 20220820091846.0 010 $a3-540-38902-4 024 7 $a10.1007/BFb0099712 035 $a(CKB)1000000000437737 035 $a(SSID)ssj0000320762 035 $a(PQKBManifestationID)12105120 035 $a(PQKBTitleCode)TC0000320762 035 $a(PQKBWorkID)10258503 035 $a(PQKB)11518038 035 $a(DE-He213)978-3-540-38902-6 035 $a(MiAaPQ)EBC5586111 035 $a(Au-PeEL)EBL5586111 035 $a(OCoLC)1066185844 035 $a(MiAaPQ)EBC6819142 035 $a(Au-PeEL)EBL6819142 035 $a(OCoLC)1113652874 035 $a(PPN)155224549 035 $a(EXLCZ)991000000000437737 100 $a20220820d1984 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAbsolute summability of Fourier series and orthogonal series /$fYasuo Okuyama 205 $a1st ed. 1984. 210 1$aBerlin :$cSpringer-Verlag,$d[1984] 210 4$d©1984 215 $a1 online resource (VI, 122 p.) 225 1 $aLecture notes in mathematics ;$vVolume 1067 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-13355-0 327 $aAbsolute convergence of orthogonal series -- Absolute Nörlund summability almost everywhere of fourier series -- Absolute Nörlund summability almost everywhere of orthogonal series -- Absolute Riesz summability almost everywhere of orthogonal series -- Absolute Nörlund summability factors of fourier series -- Absolute Nörlund summability factors of conjugate series of fourier series -- Local property of absolute Riesz summability of fourier series -- Local property of absolute Nörlund summability of fourier series. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$vVolume 1067. 606 $aTopological groups 615 0$aTopological groups. 676 $a512.55 700 $aOkuyama$b Yasuo$f1937-$041190 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466541803316 996 $aAbsolute summability of Fourier series and orthogonal series$980927 997 $aUNISA LEADER 01811nam 2200397z- 450 001 9910346704903321 005 20210212 010 $a1000009905 035 $a(CKB)4920000000094645 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/59467 035 $a(oapen)doab59467 035 $a(EXLCZ)994920000000094645 100 $a20202102d2009 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSlow-light photonic crystal devices for high-speed optical signal processing 210 $cKIT Scientific Publishing$d2009 215 $a1 online resource (X, 170 p. p.) 225 1 $aKarlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ) 311 08$a3-86644-313-7 330 $aThis book discusses design, modeling, and the characterization of slow-light photonic crystal waveguides. Guidelines are developed to obtain slow-light waveguides with broadband characteristics and with low disorder-induced losses. Three functional devices are proposed and studied: A tunable dispersion compensator, a tunable optical delay line, and a high-speed electro-optic modulator. Optical and microwave measurements confirm the designs. 606 $aTechnology: general issues$2bicssc 610 $aElectro-Optic Modulator 610 $aOptical Delay Line 610 $aPhotonic Crystal 610 $aSilicon Photonics 610 $aSlow Light 615 7$aTechnology: general issues 700 $aBrosi$b Jan-Michael$4auth$01302177 906 $aBOOK 912 $a9910346704903321 996 $aSlow-light photonic crystal devices for high-speed optical signal processing$93026205 997 $aUNINA LEADER 02305nam 22006253 450 001 9911022453903321 005 20251110205034.0 010 $a981-9646-28-6 035 $a(MiAaPQ)EBC32276245 035 $a(Au-PeEL)EBL32276245 035 $a(CKB)40860965300041 035 $a(OCoLC)1535403090 035 $a(EXLCZ)9940860965300041 100 $a20250904d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplications of theoretical methods in vibrational spectroscopy $equantum/classical mixed approach /$fShoichi Yamaguchi 205 $a1st ed. 210 1$aSingapore :$cSpringer,$d2025. 210 4$d©2025. 215 $a1 online resource (xvi, 232 pages) $ccolor illustrations 225 1 $aLecture notes in chemistry ;$vv.114 311 08$a981-9646-27-8 320 $aIncludes bibliographical references and index. 330 $aThis book provides unique introduction for experimentalists to theoretically calculate vibrational (IR, Raman, SFG) spectra of molecules in liquid and solid phases.Vibrational spectroscopy is the most popular and valuable tool for scientists to obtain physicochemical insight into complex molecular systems. 410 0$aLecture notes in chemistry ;$v114. 517 3 $aQuantum/classical mixed approac 606 $aVibrational spectra 606 $aMolecular spectroscopy 606 $aChemistry, Physical and theoretical 606 $aQuantum chemistry 606 $aSpectrum Analysis$3(DNLM)D013057 606 $aVibration$3(DNLM)D014732 606 $aChemical Phenomena$3(DNLM)D055598 606 $aChemistry, Physical$3(DNLM)D002627 615 0$aVibrational spectra. 615 0$aMolecular spectroscopy 615 0$aChemistry, Physical and theoretical. 615 0$aQuantum chemistry 615 12$aSpectrum Analysis 615 12$aVibration 615 12$aChemical Phenomena 615 2$aChemistry, Physical 676 $a539.6 700 $aYamaguchi$b Shoichi$01846887 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911022453903321 996 $aApplications of Theoretical Methods in Vibrational Spectroscopy$94431784 997 $aUNINA