LEADER 02057nam 2200433 450 001 9910138158303321 005 20240103230439.0 010 $a953-51-6447-3 035 $a(CKB)3230000000075503 035 $a(NjHacI)993230000000075503 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/65051 035 $a(EXLCZ)993230000000075503 100 $a20221015d2011 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAfter the kidney transplant $ethe patients and their allograft /$fedited by Jorge Ortiz and Jason Andre 210 $cIntechOpen$d2011 210 1$a[Place of publication not identified] :$cIntechOpen,$d2011. 215 $a1 online resource (400 pages) 311 0 $a953-307-807-3 330 $aThere are many obstacles in kidney transplantation. For the transplant team, there is the balance between immunosuppression to aid in the recipient's tolerance of the allograft and the infection risk of a suppressed immune system. These potential long term complications of kidney transplantation are relatively well known, but there are many other complications that patients and families do not consider when preparing themselves for a kidney transplant. Although the benefits of attempting a kidney transplant far outweigh downfalls of the long term sequelae, kidney transplantation is by no means a benign procedure. It is the hope of these authors that the reader will leave with a sense of understanding towards the kidney recipients. 517 $aAfter the kidney transplant 606 $aKidney Transplantation 606 $aOphthalmology 610 $aRenal medicine & nephrology 615 2$aKidney Transplantation 615 0$aOphthalmology. 676 $a617.7 702 $aOrtiz$b Jorge 702 $aAndre$b Jason 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910138158303321 996 $aAfter the Kidney Transplant$92952866 997 $aUNINA LEADER 08848nam 22004813 450 001 9911021977403321 005 20250905080656.0 010 $a3-527-84824-X 010 $a3-527-84825-8 010 $a3-527-84823-1 035 $a(CKB)40377778700041 035 $a(MiAaPQ)EBC32272771 035 $a(Au-PeEL)EBL32272771 035 $a(OCoLC)1535233905 035 $a(EXLCZ)9940377778700041 100 $a20250905d2025 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEfficient Uranium Reduction Extraction $eMaterial Design and Reaction Mechanisms 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2025. 215 $a1 online resource (302 pages) 311 08$a3-527-35414-X 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Background of Uranium Chemistry -- 1.1 Introduction of Uranium in Nuclear Industry -- 1.1.1 Importance of Uranium Resource in Nuclear Industry -- 1.1.2 Uranium Cycle in Nuclear Industry -- 1.2 Coordination and Species of Uranium -- 1.2.1 General Chemical Properties of Uranium -- 1.2.2 Basic Uranium Species in the Solution?Uranyl and Uranyl Compound -- 1.2.3 Valence Transformation of Uranium -- References -- Chapter 2 Introduction of Uranium Reduction Extraction -- 2.1 Introduction of Uranium Extraction -- 2.2 Introduction of Uranium Reduction Extraction -- 2.2.1 Basic Concept and Process of Uranium Reduction Extraction -- 2.2.2 Uranium Reduction by Zerovalent Iron -- 2.2.3 Photochemistry and Photochemical Uranium Reduction -- 2.2.4 Electrochemistry Involved in the Electrochemical Uranium Reduction -- 2.3 Key Factors to Influence the Uranium Reduction Extraction -- 2.3.1 Surface Adsorption and Coordination -- 2.3.2 Reductive Ability -- 2.4 Practical Situation that Requires Uranium Extraction -- 2.4.1 Uranium Extraction in Seawater -- 2.4.2 Uranium Extraction in Mining and Metallurgy -- 2.4.3 Uranium Extraction in Nuclear Wastewater -- References -- Chapter 3 Uranium Reduction Extraction by Modified Nano Zerovalent Iron -- 3.1 Introduction of Nano Zerovalent Iron -- 3.2 Material Design for Promoted Stability and Reductive Ability -- 3.3 Uranium Extraction Performance -- 3.4 Reaction Mechanism -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Uranium Reduction Extraction by Commercial Iron Powder -- 4.1 Introduction of Alternative Abundant Reductant?Commercial Iron Powder -- 4.2 Ultrasound Enhancement of Uranium Extraction by Commercial Iron Powder -- 4.2.1 Extraction of U(VI) by Commercial Iron Powder -- 4.2.2 Analysis of Uranium Enrichment Status. 327 $a4.2.3 Key Mechanism of Ultrasonic Enhanced Commercial Iron Powder for Uranium Extraction -- 4.3 Microbial Sulfurization?Enhanced Commercial Iron Powder Extraction of Uranium -- 4.3.1 Characterizations of BS?ZVI -- 4.3.2 Performance of Photocatalytic Enrichment of U(VI) by BS?ZVI -- 4.3.3 Photoelectric Properties and Energy Band Structure of BS?ZVI -- 4.3.4 Photocatalytic Enrichment Mechanism of U(VI) -- 4.4 Conclusion and Perspectives -- References -- Chapter 5 Photocatalytic Uranium Reduction Extraction by Carbon?Semiconductor Hybrid Material -- 5.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 5.2 Motivated Material Design of Carbon?Semiconductor Hybrid Material -- 5.2.1 Introduction -- 5.2.2 Results and Discussions -- 5.2.3 Summary -- 5.3 Band Engineering of Carbon?Semiconductor Hybrid Material -- 5.3.1 Introduction -- 5.3.2 Results and Discussions -- 5.3.3 Summary -- 5.4 Assembly of Carbon?Semiconductor Hybrid Material for Facile Recycle Use -- 5.4.1 Introduction -- 5.4.2 Results and Discussions -- 5.4.3 Summary -- 5.5 Conclusion and Perspectives -- References -- Chapter 6 Photocatalytic Uranium Reduction Extraction by Surface Reconstructed Semiconductor -- 6.1 Introduction -- 6.2 Design of Hydrogen?Incorporated Semiconductor?Hydrogen?Assist -- 6.2.1 Hydrogen?Incorporated VO2 -- 6.2.2 Hydrogen?Incorporated Oxidized WS2 -- 6.3 Hydrogen?Incorporated Vacancy Engineering -- 6.3.1 Oxygen Vacancy?Case of WO3?x -- 6.3.2 Doping?Induced Cation Vacancy?Case of Fe?Doped TiO2 -- 6.3.3 Oxygen Vacancy Engineering in Black TiO2@Co2P S?Scheme -- 6.4 Conclusions -- References -- Chapter 7 Enhanced Photocatalytic Uranium Reduction Extraction by Electron Enhancement -- 7.1 Introduction -- 7.2 Plasmonic Enhancement of Uranium Extraction -- 7.2.1 Enhanced Uranium by Hot Electrons of Plasmonic Metals -- 7.2.1.1 Introduction -- 7.2.1.2 Summary. 327 $a7.2.2 Plasmonic Engineering - High?Entropy Plasmonic Alloy -- 7.2.2.1 Introduction -- 7.2.2.2 Summary -- 7.2.3 Promotion of Electron Energy by Upconversion?Case of Er Doping -- 7.2.3.1 Introduction -- 7.2.3.2 Summary -- 7.3 Enhanced by Cocatalysis -- 7.3.1 Introduction -- 7.3.1.1 Results and Discussions -- 7.3.2 Summary -- 7.4 Conclusion and Perspectives -- References -- Chapter 8 Photocatalytic Uranium Reduction Extraction in Tributyl Phosphate?Kerosene System -- 8.1 Introduction of Tributyl Phosphate?Kerosene System?Spent Fuel Reprocessing -- 8.2 Material Design?Self Oxidation of Red Phosphorus -- 8.3 Uranium Extraction in Tributyl Phosphate?Kerosene System -- 8.4 Reaction Mechanism?Self Oxidation Cycle -- 8.5 Conclusion and Perspectives -- References -- Chapter 9 Photocatalytic Uranium Reduction Extraction in Fluoride?Containing System -- 9.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 9.2 Simultaneously Constructing U(VI) Constraint Sites and Water Oxidation Sites to Promote the Purification of Fluorine?Containing Uranium Wastewater -- 9.2.1 Introduction -- 9.2.2 Results and Discussions -- 9.2.3 Summary -- 9.3 Advanced Photocatalytic Heterojunction with Plasmon Resonance Effect for Uranium Extraction from Fluoride?Containing Uranium Wastewater -- 9.3.1 Introduction -- 9.3.2 Results and Discussions -- 9.3.3 Summary -- References -- Chapter 10 Electrochemical Uranium Reduction Extraction: Design of Electrode Materials -- 10.1 Introduction of Electrocatalytic Uranium Reduction Extraction -- 10.2 Edge?Site Confinement for Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.2.1 Introduction -- 10.2.2 Results and Discussions -- 10.2.3 Summary -- 10.3 Facet?Dependent Electrochemical Uranium Extraction in Seawater Over Fe3O4 Catalysts -- 10.3.1 Introduction -- 10.3.2 Results and Discussions -- 10.3.3 Conclusion. 327 $a10.4 Heterogeneous Interface?Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.4.1 Introduction -- 10.4.2 Results and Discussions -- 10.4.3 Summary -- 10.5 Surface Hydroxyl?Enhanced Electrochemical Extraction of Uranium -- 10.5.1 Introduction -- 10.5.2 Results and Discussions -- 10.5.3 Summary -- 10.6 Charge?Separation Engineering for Electrocatalytic Uranium Reduction Extraction -- 10.6.1 Introduction -- 10.6.2 Results and Discussions -- 10.6.3 Summary -- 10.7 Conclusion and Perspectives -- References -- Chapter 11 Electrochemical Uranium Extraction from Seawater?Reproduced Vacancy -- 11.1 Introduction of Electrocatalytic Uranium Extraction from Seawater -- 11.2 High?Selective Site Oxygen Vacancy -- 11.3 Conclusion -- References -- Chapter 12 Electrochemical Uranium Extraction from Nuclear Wastewater of Fuel Production -- 12.1 Introduction of Nuclear Wastewater of Fuel Production: Ultrahigh Concentration of Fluoride -- 12.2 Material Design?Ion Pair Sites -- 12.3 Uranium Extraction Performance -- 12.3.1 Simulated Wastewater -- 12.3.2 Real Nuclear Wastewater -- 12.4 Reaction Mechanism - Coordination and Crystallization -- 12.5 Conclusion -- References -- Chapter 13 Perspectives and Emerging Directions -- 13.1 Application in Real Situation -- 13.2 Criteria of Performance Evaluation -- 13.3 Device of Uranium Reduction Extraction -- 13.3.1 Chemical Reduction Coupled with External Field -- 13.3.2 Photocatalytic Device for Flow Cell -- 13.3.3 Electrocatalytic Device with Controlling System -- References -- Index -- EULA. 330 $aEnables readers to understand how to remove uranium from seawater and nuclear wastewater through a variety of techniques Efficient Uranium Reduction Extraction provides experimental and theoretical knowledge on uranium reduction extraction, with information ranging from the design of extraction materials and methods to the evolution of uranium. 676 $a546.431 700 $aZhu$b Wenkun$01846672 701 $aHe$b Rong$01846673 701 $aChen$b Tao$0362663 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911021977403321 996 $aEfficient Uranium Reduction Extraction$94431449 997 $aUNINA