LEADER 02459nam 2200625 a 450 001 9911020472603321 005 20200520144314.0 010 $a9786613813657 010 $a9781282242531 010 $a1282242539 010 $a9781118033203 010 $a1118033205 010 $a9781118031360 010 $a1118031369 035 $a(CKB)2550000000057793 035 $a(EBL)695275 035 $a(SSID)ssj0000566785 035 $a(PQKBManifestationID)11352784 035 $a(PQKBTitleCode)TC0000566785 035 $a(PQKBWorkID)10562865 035 $a(PQKB)11753669 035 $a(MiAaPQ)EBC695275 035 $a(PPN)196882516 035 $a(OCoLC)768243486 035 $a(Perlego)2754944 035 $a(EXLCZ)992550000000057793 100 $a19941213d1995 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCombinatorial geometry /$fJanos Pach, Pankaj K. Agarwal 210 $aNew York $cWiley$dc1995 215 $a1 online resource (374 p.) 225 1 $aWiley-Interscience series in discrete mathematics and optimization 300 $a"A Wiley-Interscience publication." 311 08$a9780471588900 311 08$a0471588903 320 $aIncludes bibliographical references and indexes. 327 $apt. 1. Arrangements of convex sets -- pt. 2. Arrangements of points and lines. 330 $aA complete, self-contained introduction to a powerful and resurging mathematical discipline . Combinatorial Geometry presents and explains with complete proofs some of the most important results and methods of this relatively young mathematical discipline, started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly half the results presented in this book were discovered over the past twenty years, and most have never before appeared in any monograph. Combinatorial Geometry will be of particular interest to mathematicians, computer scientists, physicists, and materials scientists interested i 410 0$aWiley-Interscience series in discrete mathematics and optimization. 606 $aCombinatorial geometry 615 0$aCombinatorial geometry. 676 $a516/.13 700 $aPach$b Janos$0421811 701 $aAgarwal$b Pankaj K$0601559 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020472603321 996 $aCombinatorial geometry$91020382 997 $aUNINA