LEADER 01351cam--2200409---4500 001 990000534720203316 005 20110623101424.0 010 $a88-7574-016-X 035 $a0053472 035 $aUSA010053472 035 $a(ALEPH)000053472USA01 035 $a0053472 100 $a20010702d2004----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay|||z|||001yy 200 1 $a<> De vulgari eloquentia$estoria delle varie interpretazioni e dottrina principale$fVincenzo Vivaldi$ga cura di Amalia Vivaldi 210 $aSoveria Mannelli$cCalabria letteraria$d2004 215 $a44 p.$d21 cm 300 $aIndicazione di A. a pag. 7: Amalia Vivaldi Chimirri 604 $aAlighieri, Dante . De vulgari eloquentia$2BNCF 676 $a851.109 700 1$aVIVALDI,$bVincenzo$0192236 702 1$aVIVALDI,$bAmalia 801 0$aIT$bsalbc$gISBD 912 $a990000534720203316 951 $aXIV Misc.VI.2. 1$b3816 L.G.$cXIV Misc$d00228862 959 $aBK 969 $aUMA 979 $aPATTY$b90$c20010702$lUSA01$h1026 979 $c20020403$lUSA01$h1702 979 $aPATRY$b90$c20040406$lUSA01$h1637 979 $aANNAMARIA$b90$c20091008$lUSA01$h1158 979 $aANNAMARIA$b90$c20091008$lUSA01$h1249 979 $aPASSARO$b90$c20110623$lUSA01$h1014 996 $aDe vulgari eloquentia$9885612 997 $aUNISA LEADER 05641nam 2200721 a 450 001 9911020445503321 005 20200520144314.0 010 $a9786612346231 010 $a9781282346239 010 $a1282346237 010 $a9780470058503 010 $a0470058501 010 $a9780470058510 010 $a047005851X 035 $a(CKB)1000000000687360 035 $a(EBL)470690 035 $a(SSID)ssj0000288741 035 $a(PQKBManifestationID)11231406 035 $a(PQKBTitleCode)TC0000288741 035 $a(PQKBWorkID)10382880 035 $a(PQKB)10475821 035 $a(MiAaPQ)EBC470690 035 $a(OCoLC)264615378 035 $a(Perlego)2750839 035 $a(EXLCZ)991000000000687360 100 $a20080124d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis of electromagnetic fields and waves $ethe method of lines /$fReinhold Pregla ; with the assistance of Stefan Helfert 210 $aChichester, England ;$aHoboken, NJ $cJ. Wiley & Sons/Research Studies Press$dc2008 215 $a1 online resource (523 p.) 225 1 $aRSP ;$vv.21 300 $aDescription based upon print version of record. 311 08$a9780470033609 311 08$a0470033606 320 $aIncludes bibliographical references and index. 327 $aAnalysis of Electromagnetic Fields and Waves; Contents; D EQUIVALENT CIRCUITS FOR DISCONTINUITIES; Preface; 1 THE METHOD OF LINES; 1.1 INTRODUCTION; 1.2 MOL: FUNDAMENTALS OF DISCRETISATION; 1.2.1 Qualitative description; 1.2.2 Quantitative description of the discretisation; 1.2.3 Numerical example; 2 BASIC PRINCIPLES OF THE METHOD OF LINES; 2.1 INTRODUCTION; 2.2 BASIC EQUATIONS; 2.2.1 Anisotropicmaterial parameters; 2.2.2 Relations between transversal electric and magnetic fields - generalised transmission line (GTL) equations; 2.2.3 Relation to the analysis with vector potentials 327 $a2.2.4 GTL equations for 2D structures2.2.5 Solution of the GTL equations; 2.2.6 Numerical examples; 2.3 EIGENMODES IN PLANAR WAVEGUIDE STRUCTURES WITH ANISOTROPIC LAYERS; 2.3.1 Introduction; 2.3.2 Analysis equations for eigenmodes in planar structures; 2.3.3 Examples of system equations; 2.3.4 Impedance/admittance transformation in multilayered structures; 2.3.5 System equation in transformed domain; 2.3.6 System equation in spatial domain; 2.3.7 Matrix partition technique: two examples; 2.3.8 Numerical results; 2.4 ANALYSIS OF PLANAR CIRCUITS 327 $a2.4.1 Discretisation of the transmission line equations2.4.2 Determination of the field components; 2.5 FIELD AND IMPEDANCE/ADMITTANCE TRANSFORMATION; 2.5.1 Introduction; 2.5.2 Impedance/admittance transformation in multilayered and multisectioned structures; 2.5.3 Impedance/admittance transformation with finite differences; 2.5.4 Stable field transformation through layers and sections; 3 ANALYSIS OF RECTANGULAR WAVEGUIDE CIRCUITS; 3.1 INTRODUCTION; 3.2 CONCATENATIONS OF WAVEGUIDE SECTIONS; 3.2.1 LSM and LSE modes in circular waveguide bends; 3.2.2 LSM and LSE modes in straight waveguides 327 $a3.2.3 Impedance transformation at waveguide interfaces3.2.4 Numerical results for concatenations; 3.2.5 Numerical results for waveguide filters; 3.3 WAVEGUIDE JUNCTIONS; 3.3.1 E-plane junctions; 3.3.2 H-plane junctions; 3.3.3 Algorithm for generalised scattering parameters; 3.3.4 Special junctions: E-plane 3-port junction; 3.3.5 Matched E-plane bend; 3.3.6 Analysis of waveguide bend discontinuities; 3.3.7 Scattering parameters; 3.3.8 Numerical results; 3.4 ANALYSIS OF 3D WAVEGUIDE JUNCTIONS; 3.4.1 General description; 3.4.2 Basic equations 327 $a3.4.3 Discretisation scheme for propagation between A and B3.4.4 Discontinuities; 3.4.5 Coupling to other ports; 3.4.6 Impedance/admittance transformation; 3.4.7 Numerical results; 4 ANALYSIS OF WAVEGUIDE STRUCTURES IN CYLINDRICAL COORDINATES; 4.1 INTRODUCTION; 4.2 GENERALISED TRANSMISSION LINE (GTL) EQUATIONS; 4.2.1 Material parameters in a cylindrical coordinate system; 4.2.2 GTL equations for z-direction; 4.2.3 GTL equations for ?-direction; 4.2.4 Analysis of circular (coaxial) waveguides with azimuthally-magnetised ferrites and azimuthallymagnetised solid plasma 327 $a4.2.5 GTL equations for r-direction 330 $aThe Method of Lines (MOL) is a versatile approach to obtaining numerical solutions to partial differential equations (PDEs) as they appear in dynamic and static problems. This method, popular in science and engineering, essentially reduces PDEs to a set of ordinary differential equations that can be integrated using standard numerical integration methods. Its significant advantage is that the analysis algorithms follow the physical wave propagation and are therefore efficient. This is because the fields on the discretisation lines are described by generalised transmission line (GTL) equations. 410 0$aRSP 606 $aElectromagnetic devices$xMathematical models 606 $aElectromagnetism$xMathematics 606 $aDifferential equations, Partial$xNumerical solutions 615 0$aElectromagnetic devices$xMathematical models. 615 0$aElectromagnetism$xMathematics. 615 0$aDifferential equations, Partial$xNumerical solutions. 676 $a530.14/1 700 $aPregla$b Reinhold$0949547 701 $aHelfert$b Stefan$0949548 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020445503321 996 $aAnalysis of electromagnetic fields and waves$92146247 997 $aUNINA