LEADER 03464nam 2200673Ia 450 001 9911020434103321 005 20200520144314.0 010 $a9786612348587 010 $a9781119964544 010 $a1119964547 010 $a9781282348585 010 $a1282348582 010 $a9780470694626 010 $a0470694629 010 $a9780470694633 010 $a0470694637 035 $a(CKB)1000000000579304 035 $a(EBL)406491 035 $a(SSID)ssj0000127656 035 $a(PQKBManifestationID)11132158 035 $a(PQKBTitleCode)TC0000127656 035 $a(PQKBWorkID)10054425 035 $a(PQKB)11497430 035 $a(MiAaPQ)EBC406491 035 $a(PPN)176710957 035 $a(OCoLC)299043617 035 $a(Perlego)1013894 035 $a(EXLCZ)991000000000579304 100 $a20080726d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComputational methods for plasticity $etheory and applications /$fEduardo de Souza Neto, Djordje Peric, David Owens 210 $aChichester, West Sussex, UK $cWiley$d2008 215 $a1 online resource (815 p.) 300 $aDescription based upon print version of record. 311 08$a9780470694527 311 08$a0470694521 320 $aIncludes bibliographical references and index. 327 $aComputational Methods for Plasticity; CONTENTS; Preface; Part One Basic concepts; 1 Introduction; 2 Elements of tensor analysis; 3 Elements of continuum mechanics and thermodynamics; 4 The finite element method in quasi-static nonlinear solid mechanics; 5 Overview of the program structure; Part Two Small strains; 6 The mathematical theory of plasticity; 7 Finite elements in small-strain plasticity problems; 8 Computations with other basic plasticity models; 9 Plane stress plasticity; 10 Advanced plasticity models; 11 Viscoplasticity; 12 Damage mechanics; Part Three Large strains 327 $a13 Finite strain hyperelasticity14 Finite strain elastoplasticity; 15 Finite elements for large-strain incompressibility; 16 Anisotropic finite plasticity: Single crystals; Appendices; A Isotropic functions of a symmetric tensor; B The tensor exponential; C Linearisation of the virtual work; D Array notation for computations with tensors; References; Index 330 $aThe subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic - i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity m 606 $aPlasticity$xMathematical models 606 $aMathematics 615 0$aPlasticity$xMathematical models. 615 0$aMathematics. 676 $a531/.385 700 $aNeto$b E. A. de Souza$g(Eduardo)$0471855 701 $aPeric$b Djordje$0731176 701 $aOwens$b David$f1948-$0340815 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020434103321 996 $aComputational methods for plasticity$94421637 997 $aUNINA