LEADER 01336nam 2200385Ia 450 001 9910697811903321 005 20081219171241.0 035 $a(CKB)5470000002392868 035 $a(OCoLC)289040501 035 $a(EXLCZ)995470000002392868 100 $a20081219d2001 ua 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLeadership development$b[electronic resource] $ea review of industry best practices /$fDavid V. Day, Stanley M. Halpin 210 1$aAlexandria, Va. :$cU.S. Army Research Institute for the Behavioral and Social Sciences,$d[2001] 215 $ax, 65 pages $cdigital, PDF file 225 1 $aTechnical report ;$v1111 300 $aTitle from title screen (viewed Dec. 19, 2008). 300 $a"February 2001." 300 $a"Army project number 622785A950." 320 $aIncludes bibliographical references (pages 55-60). 517 $aLeadership development 606 $aLeadership 615 0$aLeadership. 700 $aDay$b David V$0313795 701 $aHalpin$b Stanley M$01386045 712 02$aU.S. Army Research Institute for the Behavioral and Social Sciences. 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910697811903321 996 $aLeadership development$93434616 997 $aUNINA LEADER 05531nam 2200721Ia 450 001 9911020346803321 005 20200520144314.0 010 $a9786610648832 010 $a9781280648830 010 $a128064883X 010 $a9780470032008 010 $a0470032006 010 $a9780470031995 010 $a0470031999 035 $a(CKB)1000000000357070 035 $a(EBL)274313 035 $a(OCoLC)657629983 035 $a(SSID)ssj0000202424 035 $a(PQKBManifestationID)11199222 035 $a(PQKBTitleCode)TC0000202424 035 $a(PQKBWorkID)10252283 035 $a(PQKB)11235586 035 $a(MiAaPQ)EBC274313 035 $a(PPN)124552374 035 $a(Perlego)2771419 035 $a(EXLCZ)991000000000357070 100 $a20060911d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMicroporomechanics /$fLuc Dormieux, Djimedo Kondo, Franz-Josef Ulm 210 $aChichester, West Sussex, England ;$aHoboken, NJ $cWiley$dc2006 215 $a1 online resource (346 p.) 300 $aDescription based upon print version of record. 311 08$a9780470031889 311 08$a0470031883 320 $aIncludes bibliographical references (p. [319]-322) and index. 327 $aMicroporomechanics; Contents; Preface; Notation; 1 A Mathematical Framework for Upscaling Operations; 1.1 Representative Elementary Volume (rev); 1.2 Averaging Operations; 1.2.1 Apparent and Intrinsic Averages; 1.2.2 Spatial Derivatives of an Average; 1.2.3 Time Derivative of an Average; 1.2.4 Spatial and Time Derivatives of e; 1.3 Application to Balance Laws; 1.3.1 Mass Balance; 1.3.2 Momentum Balance; 1.4 The Periodic Cell Assumption; 1.4.1 Introduction; 1.4.2 Spatial and Time Derivative of e in the Periodic Case; 1.4.3 Spatial and Time Derivative of e of in the Periodic Case 327 $a1.4.4 Application: Micro- versus Macroscopic CompatibilityPart I Modeling of Transport Phenomena; 2 Micro(fluid)mechanics of Darcy's Law; 2.1 Darcy's Law; 2.2 Microscopic Derivation of Darcy's Law; 2.2.1 Thought Model: Viscous Flow in a Cylinder; 2.2.2 Homogenization of the Stokes System; 2.2.3 Lower Bound Estimate of the Permeability Tensor; 2.2.4 Upper Bound Estimate of the Permeability Tensor; 2.3 Training Set: Upper and Lower Bounds of the Permeability of a 2-D Microstructure; 2.3.1 Lower Bound; 2.3.2 Upper Bound; 2.3.3 Comparison 327 $a2.4 Generalization: Periodic Homogenization Based on Double-Scale Expansion2.4.1 Double-Scale Expansion Technique; 2.4.2 Extension of Darcy's Law to the Case of Deformable Porous Media; 2.5 Interaction Between Fluid and Solid Phase; 2.5.1 Macroscopic Representation of the Solid-Fluid Interaction; 2.5.2 Microscopic Representation of the Solid-Fluid Interaction; 2.6 Beyond Darcy's (Linear) Law; 2.6.1 Bingham Fluid; 2.6.2 Power-Law Fluids; 2.7 Appendix: Convexity of (d); 3 Micro-to-Macro Diffusive Transport of a Fluid Component; 3.1 Fick's Law 327 $a3.2 Diffusion without Advection in Steady State Conditions3.2.1 Periodic Homogenization of Diffusive Properties; 3.2.2 The Tortuosity Tensor; 3.2.3 Variational Approach to Periodic Homogenization; 3.2.4 The Geometrical Meaning of Tortuosity; 3.3 Double-Scale Expansion Technique; 3.3.1 Steady State Diffusion without Advection; 3.3.2 Steady State Diffusion Coupled with Advection; 3.3.3 Transient Conditions; 3.4 Training Set: Multilayer Porous Medium; 3.5 Concluding Remarks; Part II Microporoelasticity; 4 Drained Microelasticity; 4.1 The 1-D Thought Model: The Hollow Sphere 327 $a4.1.1 Macroscopic Bulk Modulus and Compressibility4.1.2 Model Extension to the Cavity; 4.1.3 Energy Point of View; 4.1.4 Displacement Boundary Conditions; 4.2 Generalization; 4.2.1 Macroscopic and Microscopic Scales; 4.2.2 Formulation of the Local Problem on the rev; 4.2.3 Uniform Stress Boundary Condition; 4.2.4 An Instructive Exercise: Capillary Pressure Effect; 4.2.5 Uniform Strain Boundary Condition; 4.2.6 The Hill Lemma; 4.2.7 The Homogenized Compliance Tensor and Stress Concentration 327 $a4.2.8 An Instructive Exercise: Example of an rev for an Isotropic Porous Medium. Hashin's Composite Sphere Assemblage 330 $aIntended as a first introduction to the micromechanics of porous media, this book entitled "Microporomechanics" deals with the mechanics and physics of multiphase porous materials at nano and micro scales. It is composed of a logical and didactic build up from fundamental concepts to state-of-the-art theories. It features four parts: following a brief introduction to the mathematical rules for upscaling operations, the first part deals with the homogenization of transport properties of porous media within the context of asymptotic expansion techniques. The second part deals with linear micropo 606 $aPorous materials$xMechanical properties 606 $aPorous materials$xMechanical properties$xMathematical models 606 $aMicromechanics 615 0$aPorous materials$xMechanical properties. 615 0$aPorous materials$xMechanical properties$xMathematical models. 615 0$aMicromechanics. 676 $a620.11692 700 $aDormieux$b Luc$0619863 701 $aKondo$b Djimedo$0619864 701 $aUlm$b F.-J$g(Franz-Josef)$0619865 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020346803321 996 $aMicroporomechanics$91079213 997 $aUNINA