LEADER 07562nam 22005413 450 001 9911020342803321 005 20241215110027.0 010 $a9781394297542 010 $a1394297548 035 $a(MiAaPQ)EBC31345647 035 $a(Au-PeEL)EBL31345647 035 $a(CKB)32074572900041 035 $a(Exl-AI)31345647 035 $a(CaSebORM)9781786309853 035 $a(OCoLC)1434650416 035 $a(OCoLC-P)1434650416 035 $a(Perlego)4422266 035 $a(OCoLC)1435753671 035 $a(EXLCZ)9932074572900041 100 $a20240521d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSystem Theory -- a Modern Approach, Volume 1 $eLinear Ordinary and Functional Differential Equations 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (315 pages) 225 0 $aMathematics and statistics series. New mathematical methods, systems and applications set ; volume 1 311 08$a9781786309853 311 08$a1786309858 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Notations -- Chapter 1 Representation of Systems: A Historical Overview -- 1.1. Transfer functions and matrices -- 1.1.1. Transfer functions -- 1.1.2. Transfer matrices -- 1.1.3. The discrete-time case -- 1.2. State-space representation -- 1.2.1. Continuous-time state-space systems -- 1.2.2. Discrete-time state-space systems -- 1.2.3. Controllability and observability -- 1.2.4. Poles of a state-space system -- 1.2.5. Stability of linear time-invariant systems -- 1.3. "Geometric" approach -- 1.3.1. Formalism of the geometric approach -- 1.3.2. Reachable and non-observable subspaces -- 1.3.3. State-feedback controls, observers -- 1.3.4. Canonical Kalman decomposition, stabilizability and detectability -- 1.4. Polynomial matrix description -- 1.4.1. PBH test (Hautus criterion) -- 1.4.2. Rosenbrock representation -- 1.5. The behavioral approach -- 1.5.1. Controllability without control variables -- 1.5.2. Observability in the behavioral approach -- 1.6. Module of a system -- 1.6.1. Using modules in control theory -- 1.6.2. The Fliessian approach -- 1.6.3. Characterization in terms of modules of controllability and observability -- 1.7. The formalism of algebraic analysis -- 1.7.1. Nature of algebraic analysis -- 1.7.2. Oberst's contribution and its consequences -- Chapter 2 Linear Systems: Concepts and General Results -- 2.1. Control systems -- 2.1.1. The formalism of control systems -- 2.1.2. Transfer matrix: general case -- 2.1.3. State-space representation of a control system -- 2.2. Strict equivalence of Rosenbrock systems -- 2.2.1. Admissible Rosenbrock representations -- 2.2.2. Strict equivalence -- 2.3. Controllability, observability and their duality: the algebraic point of view -- 2.3.1. Algebraic controllability. 327 $a2.3.2. Algebraic controllability of state-space systems (continuous time) -- 2.3.3. Algebraic controllability of state-space systems (discrete-time) -- 2.3.4. Algebraic duality -- 2.3.5. Algebraic observability and the algebraic duality principle -- 2.4. Reachability, observability and their duality: Kalmanian point of view -- 2.4.1. Complete controllability of a state-space system (continuous time) -- 2.4.2. Complete reachability and controllability of a state-space system (discrete-time) -- 2.4.3. Observability of state-space systems (continuous-time) -- 2.4.4. Complete observability and constructibility of state-space systems (discrete-time) -- Chapter 3 Poles and Zeros of Linear Systems, Interconnectedness and Stabilization -- 3.1. Poles and zeros of continuous or discrete invariant linear systems -- 3.1.1. System poles, transmission poles and zeros -- 3.1.2. Input-output-decoupling zeros and hidden modes -- 3.1.3. Relations between poles, transmission poles and hidden modes -- 3.1.4. Invariant zeros -- 3.1.5. Dynamic interpretation of different poles and zeros -- 3.2. Poles and zeros of interconnected systems -- 3.2.1. Diagram of a control system -- 3.2.2. System interconnection -- 3.2.3. Series interconnection -- 3.2.4. Parallel interconnection -- 3.2.5. Feedback interconnection -- 3.2.6. Youla-Ku?era parametrization of stabilizing controllers -- Chapter 4 Systems with Differential Equations and Difference Equations -- 4.1. Systems governed by functional differential equations -- 4.1.1. Functional differential equation of retarded type -- 4.1.2. Functional differential equations of neutral type -- 4.1.3. Case of infinite delays -- 4.1.4. Linear functional differential equations -- 4.1.5. Stability of functional differential equations -- 4.2. Time-invariant linear systems with lumped delays -- 4.2.1. Definition and simplified framing. 327 $a4.2.2. Commensurability or incommensurability of delays -- 4.2.3. Case of commensurable delays -- 4.2.4. Homological questions -- 4.3. Time-invariant linear systems with distributed delays -- 4.3.1. Ring H: case of non-commensurable delays -- 4.3.2. Rings H and H0: case of commensurable delays -- 4.3.3. Controllability and observability of H-systems -- 4.3.4. Stability of H-systems -- 4.3.5. Poles and zeros of H-systems -- Appendix The Mathematics of the Theory of Systems -- A.1. Laplace transform -- A.1.1. Laplace transform of functions -- A.1.2. Laplace transform of distributions having at most exponential growth -- A.1.3. Laplace transform of any distributions and ultradistributions -- A.2. C0-semi-groups of operators -- A.2.1. Bounded, compact or closed operators and their resolvent -- A.2.2. Exponential of a bounded operator and its relation with there solvent -- A.2.3. Resolvent and infinitesimal generator of a C0-semi-group of operators -- A.3. Variations on the theme of injective cogenerators -- A.3.1. Introduction -- A.3.2. Review of injective cogenerators -- A.3.3. Complements on coherent rings and modules -- A.3.4. Injective cogenerators for finitely presented modules -- A.3.5. Homo-, mono-, epi- and iso-morphisms of kernels -- A.3.6. Quotient injective cogenerators -- A.4. Complements of linear algebra -- A.4.1. Presentations of a submodule and of a quotient module -- A.4.2. Polynomial matrices and modules over K[s]T -- A.4.3. Factorization of matrices over a Bézout domain -- References -- Index -- EULA. 330 $aHenri Bourlès' 'System Theory ? A Modern Approach 1: Linear Ordinary and Functional Differential Equations' provides a comprehensive exploration of system theory, focusing on mathematical methods and their applications. The book delves into key concepts such as transfer functions, state-space systems, and algebraic analysis, offering a historical overview and modern insights into system theory. It discusses the stability, observability, and control of linear systems using various mathematical approaches, including geometric and algebraic methods. Intended for researchers, students, and professionals in engineering and applied mathematics, the book aims to enhance understanding and application of system theory in complex systems.$7Generated by AI. 606 $aDifferential equations 615 0$aDifferential equations. 676 $a515/.35 700 $aBourlès$b Henri$0914595 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020342803321 996 $aSystem Theory -- a Modern Approach, Volume 1$94416359 997 $aUNINA