LEADER 12648nam 22006133 450 001 9911020330303321 005 20250512230953.0 010 $a9781394214891 010 $a1394214898 010 $a9781394214945 010 $a1394214944 010 $a9781394214938 010 $a1394214936 035 $a(MiAaPQ)EBC31952674 035 $a(Au-PeEL)EBL31952674 035 $a(CKB)37801585400041 035 $a(OCoLC)1505951247 035 $a(BIP)91824394 035 $a(BIP)91998405 035 $a(EXLCZ)9937801585400041 100 $a20250311d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNanochitosan Applications for Enhanced Crop Production and Food Security 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2025. 215 $a1 online resource (441 pages) 311 08$a9781394212576 311 08$a1394212577 327 $aCover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 The Role of Nanomaterials in Agriculture as Nanofertilizers -- 1.1 Introduction -- 1.2 Nanotechnology in Agriculture -- 1.3 Nanomaterials -- 1.3.1 Nanoparticles -- 1.3.1.1 Properties of Nanoparticles -- 1.3.1.2 Synthesis of Nanoparticles -- 1.3.2 Application of Nanotechnology in Agriculture -- 1.3.2.1 Application of Nanotechnology in Precision Farming -- 1.3.2.2 Nanosensors -- 1.3.2.3 Nanotechnology in Water Management -- 1.3.2.4 Biosensors to Detect Nutrients and Contaminants -- 1.3.2.5 Nanotechnology to Improve Quality of Soil and Fertilizer Distribution -- 1.3.2.6 Nanotechnology to Control Plant Diseases -- 1.3.2.7 Nanofertilizers -- 1.3.2.8 Nanostructured Formulation Reduce Nutrients Loss Into Soil by Leaching -- 1.3.2.9 Application of Nanotechnology in Seed Science -- 1.4 Nanofertilizers -- 1.4.1 Types of Nanofertilizers -- 1.4.2 Uptake and Accumulation Mechanisms of Nanofertilizers from Soil to Plants -- 1.4.3 Synthesis of Nanofertilizers -- 1.4.4 Characterization of Nanofertilizers -- 1.4.5 Advantages of Nanofertilizers -- 1.4.6 Limitations of Nanofertilizers -- 1.5 Conclusion -- References -- Chapter 2 Synthesis of Nano-Chitosan Using Agricultural Waste -- 2.1 Introduction -- 2.2 Different Sources of Agricultural Waste -- 2.2.1 Shell Wastes -- 2.2.2 Livestock Wastes -- 2.2.3 Crop Residues -- 2.2.4 Agricultural Industry Wastes -- 2.2.5 Nanomaterial Synthesis Using Agro-Waste -- 2.2.6 Chitin -- 2.2.7 Chitosan Nanoparticles -- 2.2.8 Properties of Nano-Chitosan -- 2.3 Synthesis of Nano-Chitosan -- 2.3.1 Nano-Precipitation -- 2.3.2 Drying Through Spraying -- 2.3.3 The Gelation Ionotropic Technique -- 2.3.4 Droplet Emulsion Coalescence and Solvent Emulsion Diffusion -- 2.3.5 Reverse Micelles -- 2.3.6 Polyelectrolyte Complex (PEC). 327 $a2.3.7 Biological Synthesis -- 2.3.8 Biogenic Synthesis of Nano-Chitosan Over Other Nanoparticles -- 2.3.9 Chitosan Nanoparticle Characterization -- 2.3.10 Nano-Chitosan Applications -- 2.3.10.1 In Agriculture -- 2.3.10.2 Biomedicals -- 2.3.10.3 Industry -- 2.4 Conclusion -- References -- Chapter 3 Reduction of Agricultural Greenhouse Gas Emissions by Nanochitosan -- 3.1 Introduction -- 3.2 Types of Greenhouse Gases Emitted in Agriculture -- 3.3 Environmental and Economic Consequences of Greenhouse Gases -- 3.4 Nanochitosan as a Potential Mitigation Strategy -- 3.5 Mechanisms of Action for Emission Reduction -- 3.6 Crop Yield and Quality -- 3.6.1 Collaborative Stakeholder Engagement -- 3.6.2 Promoting Sustainable Farming Practices -- 3.7 Limitations and Future Research Directions -- 3.8 Conclusion and Recommendations -- References -- Chapter 4 The Application of Nanochitosan Biopesticides as a Replacement to Synthetic Pesticides -- 4.1 Introduction -- 4.2 Nanochitosan -- 4.2.1 Properties of Nanochitosan -- 4.2.2 Synthesis of Nanochitosan -- 4.2.2.1 Emulsion Cross-Linking -- 4.2.2.2 Reverse Micellar Method -- 4.2.2.3 Precipitation Method -- 4.2.2.4 Ionic Gelation -- 4.2.3 Preparation of Nanochitosan -- 4.2.4 Application of Nanochitosan in Agriculture -- 4.3 Efficacy of Nanochitosan Compared to Synthetic Pesticides -- 4.3.1 Nanochitosan's Mechanism of Action Against the Pathogens -- 4.3.2 Bioactivity of Nanochitosan as a Biopesticide -- 4.3.3 Environmental Benefits of Nanochitosan -- 4.4 Challenges and Future Prospects for the Use of Chitosan Nanoparticles as Biopesticides -- 4.5 Conclusion -- 4.6 Recommendations -- References -- Chapter 5 The Use of Nanochitosan for Enhancement in the Quality and Yield of Fruit Crops -- 5.1 Introduction -- 5.2 Chitosan -- 5.3 The Impact of Chitosan NPs on the Growth and Yields of Some Fruit Crops -- 5.3.1 Cucumber. 327 $a5.3.2 Tomato -- 5.3.3 Mango -- 5.3.4 Orange -- 5.4 Application of Chitosan Nanoparticles (ChNPs) -- 5.4.1 In Agriculture -- 5.4.2 Plant Growth Enhancement and Increased Productivity -- 5.4.3 Biocides Against Plant Pathogens and Pests -- 5.5 Other Potential Use of Nanochitosan for Enhancing Fruit Crops -- 5.5.1 Enhanced Disease Resistance -- 5.5.2 Improved Nutrient Absorption -- 5.5.3 Stress Tolerance -- 5.5.4 Post-Harvest Preservation -- 5.5.5 Environmental Impact -- 5.6 Conclusion -- References -- Chapter 6 Application of Nanochitosan for Effective Fruit Production -- 6.1 Introduction -- 6.2 Mechanism of Action -- 6.3 Fruits -- 6.3.1 Economic Importance of Fruits -- 6.3.2 Nanochitosan in Fruits and Fruit Production -- 6.4 Guidelines in Effective Application of Nanochitosan -- 6.5 Application of Nanochitosan for Different Fruits -- 6.6 Conclusion -- References -- Chapter 7 Application of Nanochitosan in the Detection of Mycotoxins -- 7.1 Introduction -- 7.2 Nanochitosan -- 7.2.1 Preparation Methods of Nanochitosan -- 7.2.1.1 Ionotropic Gelation Method -- 7.2.1.2 Emulsification and Crosslinking Method -- 7.2.1.3 Reverse Micellar Method -- 7.2.1.4 Precipitation-Based Methods -- 7.2.2 Nanochitosan-Based Sensors for Mycotoxin Detection -- 7.2.2.1 Surface Plasmon Resonance Technique -- 7.2.2.2 Colorimetric Assay -- 7.2.2.3 Chitosan-Based Electrochemical Sensors -- 7.3 Advantages of Nanochitosan -- 7.3.1 Disadvantages of Nanochitosan -- 7.3.2 Factors That Affect Nanochitosan Formation -- 7.3.2.1 Molecular Weight and Degree of Deacetylation -- 7.3.2.2 pH -- 7.3.2.3 Temperature -- 7.3.2.4 Crosslinker -- 7.4 Conclusion -- 7.5 Recommendations -- References -- Chapter 8 Application of Nanochitosan in Food Packaging Sectors -- 8.1 The Evolution of Food Packaging -- 8.2 Standard Food Packaging -- 8.3 Types of Food Packaging -- 8.3.1 Primary Packaging. 327 $a8.3.2 Secondary Packaging -- 8.3.3 Tertiary Packaging -- 8.4 Environmental Impacts of Food Packaging -- 8.5 Significance of Food Packaging -- 8.6 Current Challenges in the Field of Food Packaging and Sustainability -- 8.7 Current Scenario of Nanotechnology Application in Food Packaging -- 8.8 Different Nanoparticles in Food Packaging Applications -- 8.8.1 Inorganic Nanoparticles in Food Packaging -- 8.8.2 Organic Nanoparticles in Food Packaging -- 8.8.2.1 Chitosan -- 8.8.2.2 Nanochitosan as a Food Packing Material -- 8.9 Preparation of Chitosan Nanoparticles -- 8.9.1 Ionic Gelation Method -- 8.9.2 Reverse Micellar Method -- 8.9.3 Nano-Based Food Packaging Methods -- 8.9.3.1 Active Packaging -- 8.9.3.2 Smart Packaging -- 8.9.3.3 Intelligent Packaging -- 8.9.4 Food Application of Chitosan -- 8.9.4.1 Edible Coating or Film -- 8.9.4.2 Bread -- 8.9.4.3 Egg -- 8.9.4.4 Vegetables and Fruits -- 8.9.4.5 Juice -- 8.9.4.6 Meat -- 8.9.4.7 Milk -- 8.9.4.8 Noodles -- 8.9.4.9 Rice Cake -- 8.9.4.10 Sausage -- 8.9.4.11 Seafoods and Seafood Products -- 8.9.4.12 Soybean Curd (Tofu) -- 8.9.4.13 Vinegar -- 8.9.5 Other Applications of Chitosan Nanoparticles -- 8.9.5.1 Medicine and Pharmaceuticals -- 8.9.5.2 Wastewater Treatment -- 8.10 Advantages of Nanotechnology in Food Packaging -- 8.10.1 Nanoparticles Protect Food Quality Decay Caused by Chemicals -- 8.10.2 Nanoparticles for Enhancing Physical Properties -- 8.10.3 Nanoparticles for the Detection of Food Borne Pathogens -- 8.10.4 Nanoparticles for Inhibiting Biofilm Formation -- 8.10.5 Eco-Friendly -- 8.11 Conclusion -- References -- Chapter 9 Application of Nanochitosan as Food Additive and Preservatives -- 9.1 Introduction -- 9.2 Importance of Food Additives and Preservatives in the Food Industry -- 9.3 Transition to the Application of Nanochitosan in Food Preservation -- 9.4 Physicochemical Properties of Chitosan. 327 $a9.4.1 Solubility -- 9.4.2 Molecular Weight -- 9.4.3 Degree of Deacetylation -- 9.4.4 Viscosity -- 9.5 Mechanisms of Food Spoilage and Preservation -- 9.6 Application of Nanochitosan as Food Additives -- 9.6.1 Nanochitosan as a Preservative Agent -- 9.7 Safety and Regulatory Considerations for Nanochitosan -- 9.8 Case Studies and Practical Applications of Nanochitosan -- 9.9 Future Prospects and Challenges -- 9.10 Conclusion -- References -- Chapter 10 Applications of Chitosan Nanocomposites in Packaging of Food Products -- 10.1 Introduction -- 10.2 The Chitosan Antimicrobial Potential -- 10.3 Chitosan Composites for Food Applications -- 10.3.1 Chitosan Enhanced with Nano-Sized Metals -- 10.3.1.1 Nano-Sized Zinc Oxide Particles (ZNPs) -- 10.3.1.2 Titanium Dioxide Nanoparticles (TNPs) -- 10.3.1.3 Silver Nanoparticles (AgNPs) -- 10.3.1.4 Silicon Dioxide and Silica Nanoparticles -- 10.3.1.5 Copper Nanoparticles (CuNPs) -- 10.3.1.6 Magnesium Nanoparticles (MgNPs) -- 10.3.1.7 Sulfur Nanoparticles (SNPs) -- 10.3.1.8 Chitosan Enhanced with Carbon -- 10.3.2 Polysaccharide-Chitosan Composite -- 10.3.3 Essential Oil-Chitosan-Based Composite for Food Applications -- 10.3.4 Gelatin-Chitosan-Based Composite for Food Packaging Applications -- 10.3.4.1 Application of Gelatin-Based Composites for Packaging Various Food Items -- 10.3.5 Clay-Chitosan-Based Composite for Food Packaging -- 10.3.5.1 Food Packaging-Related Applications of Chitosan-Clay Nanocomposites -- 10.3.6 Polyphenolics-Chitosan-Based Composite for Food Packaging -- 10.3.7 Polyvinyl Alcohol-Chitosan-Based Composite for Food Packaging -- 10.4 Conclusion -- References -- Chapter 11 Application of Nanochitosan as Biofertilizers for Sustainable Agriculture -- 11.1 Introduction to Nanoparticle and Chitosan -- 11.2 Nanofertilizers -- 11.2.1 Types of Nanofertilizers. 327 $a11.2.1.1 Classification Based on Their Modes of Action. 330 $aThis unique, important, and timely book provides detailed information about the application of nanochitosan to increase agricultural productivity to enhance food security and nutrition. Readers will find in Nanochitosan Applications for Enhanced Crop Production and Food Security detailed state-of-the-art information including: The modes of action through which nanochitosan perform numerous biological activities; State-of-the-art information and recent advancements in the application of nanochitosan, including targeted delivery, genetic manipulation, antimicrobial uses, curing infections in plants, controlled delivery of biologically active constituents, applications in the evaluation of carbon dioxide concentrations and humidity in controlled greenhouse environments, and their use as pressure sensors in agrichemical spraying equipment; Information on applying nanochitosan as a biofertilizer and bioinsecticide when applied on seeds and for foliar spraying of agricultural crops, soil amendment, and protection against pathogens and pests; The application of nanochitosan in the manufacturing of nanosensors in precision farming in the determination of crop growth, condition of soils, penetration of agrochemicals, diseases, and the level of environmental pollution to ensure a high level of safety for plant and soil health. Audience Researchers, scientists, and graduate students in agriculture, crop science, agricultural biotechnology, and agricultural engineering applications of nanochitosan, as well as policymakers, entrepreneurs, and investors in agriculture and food security. 700 $aAdetunji$b Charles Oluwaseun$01838621 701 $aShah$b Maulin P$01258338 701 $aBello$b Yerima Mohammed$01838622 701 $aHefft$b Daniel Ingo$01838623 701 $aSingh$b Jay$01752693 701 $aPandey$b Shyam S$01838624 701 $aPratap Singh$b Ravindra$01818119 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020330303321 996 $aNanochitosan Applications for Enhanced Crop Production and Food Security$94417647 997 $aUNINA