LEADER 03598nam 2200721 a 450 001 9911020326203321 005 20200520144314.0 010 $a9786613175748 010 $a9781118984017 010 $a1118984013 010 $a9781283175746 010 $a1283175746 010 $a9781118028636 010 $a1118028635 010 $a9781118028612 010 $a1118028619 035 $a(CKB)2550000000041255 035 $a(EBL)697567 035 $a(OCoLC)747408908 035 $a(SSID)ssj0000525393 035 $a(PQKBManifestationID)12183571 035 $a(PQKBTitleCode)TC0000525393 035 $a(PQKBWorkID)10507477 035 $a(PQKB)11065934 035 $a(MiAaPQ)EBC697567 035 $a(Perlego)1011170 035 $a(EXLCZ)992550000000041255 100 $a20101213d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRisk management for design and construction /$fOvidiu Cretu, Robert Stewart, Terry Berends 210 $aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (285 p.) 225 1 $aRSMeans ;$vv.76 300 $aDescription based upon print version of record. 311 08$a9780470635384 311 08$a047063538X 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note : Preface -- Acknowledgements -- ch. 1. Why and what is risk management -- ch. 2. Project cost and schedule estimates -- ch. 3. The risk based estimate -- ch. 4. Risk elicitation -- ch. 5. Risk management -- ch. 6. Risk-based estimate self-modeling spreadsheet -- ch. 7. Risk-based estimate workshop. 330 $a"This text provides a balance of theory, technique and facilitation. The emphasis is on providing a practical and proven framework for risk management on real projects with a clear, concise description of the complex topic of risk for professionals. Written by two experts in the field, it offers a practical, proven means of quantifying and minimizing risk, to inform business decisions in the design and construction field. Case studies and examples on the proper application of software and principles help make this book an important reference to the field"--$cProvided by publisher. 330 $a"The book presents an integrated approach to cost and schedule for qualitative risk analysis. This approach recognizes the value of considering the project schedule when cost is estimated. The approach was created and developed at the Washington State Department of Transportation (WSDOT). The authors have expanded the scope of the process to cover any type of construction, and have provided two case studies developed throughout the book presenting the process in use on an instutional construction project and a heavy civil construction job"--$cProvided by publisher. 410 0$aRSMeans 606 $aBuilding$xSafety measures 606 $aConstruction industry$xAccidents$xPrevention 606 $aConstruction industry$xRisk management 615 0$aBuilding$xSafety measures. 615 0$aConstruction industry$xAccidents$xPrevention. 615 0$aConstruction industry$xRisk management. 676 $a690/.22 686 $aTEC005000$2bisacsh 700 $aCretu$b Ovidiu$01838880 701 $aStewart$b Robert$f1968-$01838881 701 $aBerends$b Terry$01838882 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020326203321 996 $aRisk management for design and construction$94417968 997 $aUNINA LEADER 12694nam 22007335 450 001 9910591040303321 005 20251113184457.0 010 $a981-19-4672-8 024 7 $a10.1007/978-981-19-4672-1 035 $a(MiAaPQ)EBC7080267 035 $a(Au-PeEL)EBL7080267 035 $a(CKB)24778999000041 035 $a(PPN)264955846 035 $a(OCoLC)1344433701 035 $a(DE-He213)978-981-19-4672-1 035 $a(EXLCZ)9924778999000041 100 $a20220903d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDirichlet Forms and Related Topics $eIn Honor of Masatoshi Fukushima?s Beiju, IWDFRT 2022, Osaka, Japan, August 22?26 /$fedited by Zhen-Qing Chen, Masayoshi Takeda, Toshihiro Uemura 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (572 pages) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v394 311 08$aPrint version: Chen, Zhen-Qing Dirichlet Forms and Related Topics Singapore : Springer,c2022 9789811946714 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- List of Masatoshi Fukushima's Publications -- Contents -- Markov Uniqueness and Fokker-Planck-Kolmogorov Equations -- 1 Introduction and Framework -- 2 The Main Idea and a Parabolic Condition for Uniqueness -- 3 Some Uniqueness Results for FPKEs -- 3.1 Fokker-Planck-Kolmogorov Equations -- 3.2 Nondegenerate VMO Diffusion Coefficients -- 3.3 Nondegenerate Locally Lipschitz Diffusion Coefficients -- 3.4 Nondegenerate Diffusion Coefficients and the Lyapunov Function Condition -- 3.5 Degenerate Diffusion Coefficients -- 4 Applications to the Markov Uniqueness Problem -- 4.1 The Framework -- 4.2 Nondegenerate VMO Diffusion Coefficients -- 4.3 Nondegenerate Locally Lipschitz Diffusion Coefficients -- 4.4 Nondegenerate Diffusion Coefficients and Lyapunov Function Conditions -- 4.5 Degenerate Diffusion Coefficients -- References -- A Chip-Firing and a Riemann-Roch Theorem on an Ultrametric Space -- 1 Introduction -- 2 Laplacian and Riemann-Roch Theorem on Ultrametric Space with Finite Vertices -- 3 Unification of Ultrametric Space with Finite Verteces -- 4 Riemann-Roch Theorem on Ultrametric Space with Countably Many Vertices -- References -- Hermitizable, Isospectral Matrices or Differential Operators -- 1 Hermitizable, Isospectral Matrices -- 2 Hermitizable, Isospectral Differential Operators -- References -- On Strongly Continuous Markovian Semigroups -- References -- Two-Sided Heat Kernel Estimates for Symmetric Diffusion Processes with Jumps: Recent Results -- 1 Introduction -- 2 Stability of Heat Kernel Estimates for Symmetric Diffusions with Jumps -- 2.1 Two-Sided Heat Kernel Estimates -- 2.2 Example -- 3 Symmetric Reflected Diffusions with Jumps in Inner Uniform Domains -- 3.1 Reflected Diffusions on Inner Uniform Domains -- 3.2 Reflected Diffusions with Jumps. 327 $a3.3 Heat Kernel Estimates for the beta Subscript asterisk Baseline less than or equals beta Superscript asterisk Baseline less than or equals normal infinity?*le?* leinfty in StartSet 0 Subscript plus Baseline EndSet union left parenthesis 0 comma normal infinity right bracket{0+}(0, infty] Case -- 3.4 Discussion on Off-Diagonal Heat Kernel Upper Bound -- 3.5 Example -- References -- On Non-negative Solutions to Space-Time Partial Differential Equations of Higher Order -- 1 Introduction -- 2 An Abstract Problem -- 3 Some Translation Invariant Pseudo-differential Operators -- 4 Some Discussions on the Case upper N equals 2N=2 -- 5 Higher Order Partial Differential Equations Admitting Non-negative Solutions -- References -- Monotonicity Properties of Regenerative Sets and Lorden's Inequality -- 1 Introduction -- 2 Lorden's Inequality -- 3 Monotone Potential Density -- 4 Concluding Remarks -- References -- Doob Decomposition, Dirichlet Processes, and Entropies on Wiener Space -- 1 Introduction -- 2 Doob Decomposition in Continuous Time -- 3 Entropies and Couplings on Wiener Space -- References -- Analysis on Fractal Spaces and Heat Kernels -- 1 Introduction -- 2 Classical Heat Kernel -- 3 Examples of Fractals -- 4 Dirichlet Forms -- 5 Walk Dimension -- 6 Besov Spaces and Characterization of beta? -- 7 Dichotomy of Self-similar Heat Kernels -- 8 Estimating Heat Kernels: Strongly Local Case -- 9 Estimating Heat Kernels: Jump Case -- 10 Ultra-metric Spaces -- References -- Silverstein Extension and Fukushima Extension -- 1 Introduction -- 2 Silverstein Extensions -- 3 Fukushima Extensions -- 4 Examples of Fukushima Extensions -- 5 Fukushima Subspaces -- 6 Example: Revisit -- References -- Singularity of Energy Measures on a Class of Inhomogeneous Sierpinski Gaskets -- 1 Introduction -- 2 Framework and Statement of Theorems -- 3 Preliminary Lemmas. 327 $a4 Proof of the Main Results -- 5 Concluding Remarks -- References -- On upper L Superscript pLp Liouville Theorems for Dirichlet Forms -- 1 Introduction -- 2 Fukushima's Ergodic Theorem -- 3 Regular Dirichlet Forms and Harmonic Functions -- 3.1 Basic Notions and Intrinsic Metrics -- 3.2 Harmonic Functions -- 4 A Caccioppoli Inequality -- 5 Proof of Yau's and Karp's Theorem and Recurrence -- 5.1 Proof of Yau's and Karp's Theorem -- 5.2 Proof of the Growth Test for Recurrence -- References -- On Singularity of Energy Measures for Symmetric Diffusions with Full Off-Diagonal Heat Kernel Estimates II: Some Borderline Examples -- 1 Introduction -- 2 The Examples: Thin Scale Irregular Sierpi?ski Gaskets -- 3 Space-Time Scale Function upper Psi Subscript bold italic ll and fHKEfHKE left parenthesis upper Psi Subscript bold italic l Baseline right parenthesisfHKE(l) -- 4 Singularity of the Energy Measures -- 5 Realizing Arbitrarily Slow Decay Rates of upper Psi left parenthesis r right parenthesis divided by r squared(r)/r2 -- References -- Scattering Lengths for Additive Functionals and Their Semi-classical Asymptotics -- 1 Introduction -- 2 Scattering Length for Additive Functionals -- 3 Kac's Scattering Length Formula -- 4 Semi-classical Asymptotics for Scattering Length -- References -- Equivalence of the Strong Feller Properties of Analytic Semigroups and Associated Resolvents -- 1 Introduction -- 2 Preliminaries -- 3 Equivalence of the Strong Feller Properties -- 4 Application to Markov Processes Associated with Lower Bounded Semi-Dirichlet Forms -- References -- Interactions Between Trees and Loops, and Their Representation in Fock Space -- 1 Framework and Definitions -- 2 Interaction Between Tree and Loops -- 3 Fock Spaces -- 4 Local Interaction in Supersymmetric Fock Space -- References -- Remarks on Quasi-regular Dirichlet Subspaces. 327 $a1 Introduction -- 2 Quasi-regular Dirichlet Subspaces -- 3 Quasi-regular Dirichlet Subspaces of Concrete Dirichlet Forms -- 3.1 One-Dimensional Brownian Motion -- 3.2 Multi-dimensional Brownian Motion -- 4 Further Remarks -- References -- Power-Law Dynamic Arising from Machine Learning -- 1 Introduction -- 2 Background and Preliminaries on Power-Law Dynamic -- 2.1 Background in Machine Learning -- 2.2 Preliminaries on Power-Law Dynamic -- 3 Property of the Stationary Distribution -- 4 Existence and Uniqueness of the Stationary Distribution -- 5 First Exit Time: Asymptotic Order -- 6 First Exit Time: From Continuous to Discrete -- References -- Hölder Estimates for Resolvents of Time-Changed Brownian Motions -- 1 Introduction -- 2 Main Results -- 3 Preliminary Lemmas -- 4 Proof of Theorem 1 -- References -- On the Continuity of Half-Plane Capacity with Respect to Carathéodory Convergence -- 1 Introduction -- 2 Study on the Upper Half-Plane -- 2.1 Basic Definitions and Proof of Theorem1 -- 2.2 Strict Monotonicity -- 3 Study on Parallel Slit Half-Planes -- 3.1 BMD Half-Plane Capacity -- 3.2 Markov Chains Induced by BMD -- 3.3 Uniform Regularity of Slit Domains -- 4 Relation to Geometric Function Theory -- 4.1 Half-Plane Capacity and Angular Residue at Infinity -- 4.2 Carathéodory Convergence and Locally Uniform Convergence -- References -- Dyson's Model in Infinite Dimensions Is Irreducible -- 1 Introduction -- 2 The MathID170 m-Labeled Process and the Lyons-Zheng Decomposition -- 3 Proof of Theorems 2 and 3 -- 4 Proof of Theorem 1 -- References -- (Weak) Hardy and Poincaré Inequalities and Criticality Theory -- 1 Introduction -- 2 Preliminaries -- 2.1 Closed Quadratic Forms on upper L squared left parenthesis upper X comma mu right parenthesisL2(X,µ) and upper L Superscript 0 Baseline left parenthesis upper X comma mu right parenthesisL0(X,µ). 327 $a2.2 Extensions of Positivity Preserving Operators -- 3 The Beurling-Deny Criteria, Excessive Functions and Extended Forms -- 3.1 Basics and Excessive Functions -- 3.2 The Extensions q Subscript eqe and q Superscript plusq+ -- 3.3 Invariant Sets and Irreducibilty -- 4 (Very) Weak and Abstract Poincaré and Hardy inequalities -- 5 From Weak Hardy Inequalities to Hardy Inequalities-Subcriticality -- 6 Weak Poincaré Inequalities and Completeness of Extended form Domains -- References -- Maximal Displacement of Branching Symmetric Stable Processes -- 1 Introduction -- 2 Symmetric Stable Processes -- 2.1 Resolvent Asymptotics -- 2.2 Spectral Properties of Schrödinger Type Operators with the Fractional Laplacian -- 2.3 Asymptotic Behaviors of Feynman-Kac Functionals -- 3 Maximal Displacement of Branching Symmetric Stable Processes -- 3.1 Branching Symmetric Stable Processes -- 3.2 Weak Convergence and Tail Asymptotics -- 3.3 Examples -- 4 Proof of Theorem 17 -- References -- Random Riemannian Geometry in 4 Dimensions -- 1 Random Riemannian Geometries and Conformal Invariance -- 2 Paneitz Energy on 4-Dimensional Manifolds -- 3 Co-biharmonic Gaussian Field and Quantum Liouville Measure -- 3.1 Conformally Invariant Gaussian Field -- 3.2 Quantum Liouville Measure -- 4 Approximation by Random Fields and Liouville Measures on the Discrete 4-Torus -- 4.1 The Isotropic Haar System -- 4.2 The Semi-discrete Gaussian Field -- 4.3 The Semi-discrete Liouville Measure -- 4.4 Discrete Random Objects -- References -- Infinite Particle Systems with Hard-Core and Long-Range Interaction -- 1 Introduction -- 2 Preliminaries -- 2.1 Systems of Unlabeled Hard Balls -- 2.2 Systems of Labeled Balls -- 2.3 Skorohod Equation -- 3 Results -- 3.1 Existence of a Weak Solution -- 3.2 Statement of the Results -- 4 Proof of the Main Theorem -- 4.1 Finite Cluster Property. 327 $a4.2 On the Lipschitz Continuity of b Subscript bold italic upper X Superscript double struck upper IbXmathbbI. 330 $aThis conference proceeding contains 27 peer-reviewed invited papers from leading experts as well as young researchers all over the world in the related fields that Professor Fukushima has made important contributions to. These 27 papers cover a wide range of topics in probability theory, ranging from Dirichlet form theory, Markov processes, heat kernel estimates, entropy on Wiener spaces, analysis on fractal spaces, random spanning tree and Poissonian loop ensemble, random Riemannian geometry, SLE, space-time partial differential equations of higher order, infinite particle systems, Dyson model, functional inequalities, branching process, to machine learning and Hermitizable problems for complex matrices. Researchers and graduate students interested in these areas will find this book appealing. Professor Masatoshi Fukushima is well known for his fundamental contributions to the theory of Dirichlet forms andsymmetric Markov processes. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v394 606 $aProbabilities 606 $aMarkov processes 606 $aStochastic analysis 606 $aPotential theory (Mathematics) 606 $aProbability Theory 606 $aMarkov Process 606 $aStochastic Analysis 606 $aPotential Theory 615 0$aProbabilities. 615 0$aMarkov processes. 615 0$aStochastic analysis. 615 0$aPotential theory (Mathematics) 615 14$aProbability Theory. 615 24$aMarkov Process. 615 24$aStochastic Analysis. 615 24$aPotential Theory. 676 $a519.2 702 $aChen$b Zhen-Qing 702 $aTakeda$b Masayoshi 702 $aUemura$b Toshihiro 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910591040303321 996 $aDirichlet forms and related topics$93005081 997 $aUNINA