LEADER 09066nam 2200541 450 001 9910816370303321 005 20231110213241.0 010 $a1-118-94980-3 010 $a1-118-94979-X 010 $a1-118-94981-1 035 $a(CKB)4330000000007631 035 $a(MiAaPQ)EBC6607709 035 $a(Au-PeEL)EBL6607709 035 $a(OCoLC)1251441246 035 $a(PPN)258541725 035 $a(EXLCZ)994330000000007631 100 $a20220118d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to flight testing /$fJames W. Gregory, Tianshu Liu 205 $aFirst edition. 210 1$aHoboken, New Jersey :$cWiley,$d[2021] 210 4$dİ2021 215 $a1 online resource (355 pages) 225 1 $aAerospace 311 1 $a1-118-94982-X 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- About the Authors -- Series Preface -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Case Study: Supersonic Flight in the Bell XS?1 -- 1.2 Types of Flight Testing -- 1.2.1 Scientific Research -- 1.2.2 Experimental Flight Test -- 1.2.3 Developmental Test and Evaluation -- 1.2.4 Operational Test and Evaluation -- 1.2.5 Airworthiness Certification -- 1.3 Objectives and Organization of this Book -- References -- Chapter 2 The Flight Environment: Standard Atmosphere -- 2.1 Earth's Atmosphere -- 2.2 Standard Atmosphere Model -- 2.2.1 Hydrostatics -- 2.2.2 Gravitational Acceleration and Altitude Definitions -- 2.2.3 Temperature -- 2.2.4 Viscosity -- 2.2.5 Pressure and Density -- 2.2.6 Operationalizing the Standard Atmosphere -- 2.2.7 Comparison with Experimental Data -- 2.3 Altitudes Used in Aviation -- References -- Chapter 3 Aircraft and Flight Test Instrumentation -- 3.1 Traditional Cockpit Instruments -- 3.1.1 Gyroscopic?Based Instruments -- 3.1.2 Pressure?Based Instruments -- 3.1.3 Outside Air Temperature -- 3.1.4 Other Instrumentation -- 3.2 Glass Cockpit Instruments -- 3.3 Flight Test Instrumentation -- 3.3.1 Global Navigation Satellite System -- 3.3.2 Accelerometers -- 3.3.3 Gyroscopes -- 3.3.4 Magnetometers -- 3.3.5 Barometer -- 3.3.6 Fusion of Sensor Data Streams -- 3.4 Summary -- References -- Chapter 4 Data Acquisition and Analysis -- 4.1 Temporal and Spectral Analysis -- 4.2 Filtering -- 4.3 Digital Sampling: Bit Depth Resolution and Sample Rate -- 4.4 Aliasing -- 4.5 Flight Testing Example -- 4.6 Summary -- References -- Chapter 5 Uncertainty Analysis -- 5.1 Error Theory -- 5.1.1 Types of Errors -- 5.1.2 Statistics of Random Error -- 5.1.3 Sensitivity Analysis and Uncertainty Propagation -- 5.1.4 Overall Uncertainty Estimate. 327 $a5.1.5 Chauvenet's Criterion for Outliers -- 5.1.6 Monte Carlo Simulation -- 5.2 Basic Error Sources in Flight Testing -- 5.2.1 Uncertainty of Flight Test Instrumentation -- 5.2.2 Example: Uncertainty in Density (Traditional Approach) -- 5.2.3 Example: Uncertainty in True Airspeed (Monte Carlo Approach) -- References -- Chapter 6 Flight Test Planning -- 6.1 Flight Test Process -- 6.2 Risk Management -- 6.3 Case Study: Accept No Unnecessary Risk -- 6.4 Individual Flight Planning -- 6.4.1 Flight Area and Airspace -- 6.4.2 Weather and NOTAMs -- 6.4.3 Weight and Balance -- 6.4.4 Airplane Pre?Flight -- 6.5 Conclusion -- References -- Chapter 7 Drag Polar Measurement in Level Flight -- 7.1 Theory -- 7.1.1 Drag Polar and Power Required for Level Flight -- 7.1.2 The PIW-VIW Method -- 7.1.3 Internal Combustion Engine Performance Additional details are available in an online supplement, "Basic Performance Prediction of Internal Combustion Engines." -- 7.1.4 Propeller Performance -- 7.2 Flight Testing Procedures -- 7.3 Flight Test Example: Cirrus SR20 -- References -- Chapter 8 Airspeed Calibration -- 8.1 Theory -- 8.1.1 True Airspeed -- 8.1.2 Equivalent Airspeed -- 8.1.3 Calibrated Airspeed -- 8.1.4 Indicated Airspeed -- 8.1.5 Summary -- 8.2 Measurement Errors -- 8.2.1 Instrument Error -- 8.2.2 System Lag -- 8.2.3 Position Error -- 8.3 Airspeed Calibration Methods -- 8.3.1 Boom?Mounted Probes -- 8.3.2 Trailing Devices and Pacer Aircraft -- 8.3.3 Ground?Based Methods -- 8.3.4 Global Positioning System Method -- 8.4 Flight Testing Procedures -- 8.5 Flight Test Example: Cirrus SR20 -- References -- Chapter 9 Climb Performance and Level Acceleration to Measure Excess Power -- 9.1 Theory -- 9.1.1 Steady Climbs -- 9.1.2 Energy Methods -- 9.2 Flight Testing Procedures -- 9.2.1 Direct Measurement of Rate of Climb -- 9.2.2 Measurement of Level Acceleration. 327 $a9.3 Data Analysis -- 9.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 10 Glide Speed and Distance -- 10.1 Theory -- 10.1.1 Drag Polar -- 10.1.2 Gliding Flight -- 10.1.3 Glide Hodograph -- 10.1.4 Best Glide Condition -- 10.2 Flight Testing Procedures -- 10.3 Data Analysis -- 10.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 11 Takeoff and Landing -- 11.1 Theory -- 11.1.1 Takeoff Ground Roll -- 11.1.2 Landing Ground Roll -- 11.1.3 Rotation Distance -- 11.1.4 Transition Distance -- 11.1.5 Climb Distance -- 11.1.6 Total Takeoff and Landing Distances -- 11.1.7 Simple Estimations -- 11.2 Measurement Methods -- 11.3 Flight Testing Procedures -- 11.3.1 Standard Flight Procedures -- 11.3.2 Flight Test Procedures -- 11.3.3 Data Acquisition -- 11.3.4 Data Analysis -- 11.4 Flight Test Example: Cessna R182 -- References -- Chapter 12 Stall Speed -- 12.1 Theory -- 12.1.1 Viscous Boundary Layers -- 12.1.2 Flow Separation -- 12.1.3 Two?Dimensional Stall Characteristics -- 12.1.4 Three?Dimensional Stall Characteristics -- 12.1.5 Stall Control -- 12.1.6 Stall Prediction -- 12.2 Flight Testing Procedures -- 12.2.1 Flight Characteristics -- 12.2.2 Data Acquisition -- 12.3 Data Analysis -- 12.4 Flight Test Example: Cirrus SR20 -- References -- Chapter 13 Turning Flight -- 13.1 Theory -- 13.2 Flight Testing Procedures -- 13.2.1 Airworthiness Certification -- 13.2.2 Educational Flight Testing -- 13.2.3 Piloting -- 13.2.4 Instrumentation and Data Recording -- 13.3 Flight Test Example: Diamond DA40 -- References -- Chapter 14 Longitudinal Stability -- 14.1 Static Longitudinal Stability -- 14.1.1 Theory -- 14.1.2 Trim Condition -- 14.1.3 Flight Testing Procedures -- 14.1.4 Flight Test Example: Cirrus SR20 -- 14.2 Dynamic Longitudinal Stability -- 14.2.1 Theory -- 14.2.2 Flight Testing Procedures -- 14.2.3 Flight Test Example: Cirrus SR20. 327 $aReferences -- Chapter 15 Lateral?Directional Stability -- 15.1 Static Lateral?Directional Stability -- 15.1.1 Theory -- 15.1.2 Directional Stability -- 15.1.3 Lateral Stability -- 15.1.4 Flight Testing Procedures -- 15.1.5 Flight Testing Example: Cirrus SR20 -- 15.2 Dynamic Lateral?Directional Stability -- 15.2.1 Theory -- 15.2.2 Flight Testing Procedures -- 15.2.3 Flight Test Example: Cirrus SR20 -- Nomenclature -- Acronyms and Abbreviations -- References -- Chapter 16 UAV Flight Testing1 -- 16.1 Overview of Unmanned Aircraft -- 16.2 UAV Design Principles and Features -- 16.2.1 Types of Airframes -- 16.2.2 UAV System Architecture -- 16.2.3 Electric Propulsion -- 16.2.4 Command and Control (C2) Link -- 16.2.5 Autonomy -- 16.3 Flight Regulations -- 16.4 Flight Testing Principles -- 16.4.1 Air Data Instrumentation -- 16.4.2 UAV Flight Test Planning -- 16.4.3 Piloting for UAV Flight Testing -- 16.5 Flight Testing Examples with the Peregrine UAS -- 16.5.1 Overview of the Peregrine UAS -- 16.5.2 Propulsion System Characterization -- 16.5.3 Specific Excess Power: Level Acceleration and Rate of Climb -- 16.5.4 Glide Flight Tests -- 16.6 Flight Testing Examples with the Avanti UAS -- 16.6.1 Overview of the Avanti UAS -- 16.6.2 Coast?Down Testing for the Drag Polar -- 16.6.3 Radio Range Testing -- 16.6.4 Assessment of Autonomous System Performance -- 16.7 Conclusion -- References -- Appendix A Standard Atmosphere Tables -- Appendix B Useful Constants and Unit Conversion Factors -- Reference -- Appendix C Stability and Control Derivatives for a Notional GA Aircraft -- Reference -- Index -- EULA. 330 $aIntroduction to Flight Testing provides a concise introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles for courses in aeronautical engineering. There is particular emphasis on the use of modern on-board instruments and inexpensive, off-the-shelf portable devices that make flight testing accessible to nearly any student. 410 0$aAerospace 606 $aAirplanes$xFlight testing$vTextbooks 615 0$aAirplanes$xFlight testing 676 $a629.13453 700 $aGregory$b James W.$0272448 702 $aLiu$b T$g(Tianshu), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816370303321 996 $aIntroduction to flight testing$93990683 997 $aUNINA LEADER 05540nam 2200709 a 450 001 9911020251903321 005 20200520144314.0 010 $a9786612345654 010 $a9781282345652 010 $a1282345656 010 $a9780470512470 010 $a0470512474 010 $a9780470512463 010 $a0470512466 035 $a(CKB)1000000000376975 035 $a(EBL)470670 035 $a(SSID)ssj0000292715 035 $a(PQKBManifestationID)11213249 035 $a(PQKBTitleCode)TC0000292715 035 $a(PQKBWorkID)10269251 035 $a(PQKB)10468553 035 $a(MiAaPQ)EBC470670 035 $a(OCoLC)181372013 035 $a(Perlego)2756322 035 $a(EXLCZ)991000000000376975 100 $a20070702d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aConversational informatics $ean engineering approach /$fedited by Toyoaki Nishida 210 $aChichester, England ;$aHoboken, NJ $cWiley$dc2007 215 $a1 online resource (433 p.) 225 1 $aWiley series in agent technology 300 $aDescription based upon print version of record. 311 08$a9780470026991 311 08$a0470026995 320 $aIncludes bibliographical references and index. 327 $aCONVERSATIONAL INFORMATICS AN ENGINEERING APPROACH; Contents; Preface; List of Contributors; 1 Introduction; 1.1 Conversation: the Most Natural Means of Communication; 1.2 An Engineering Approach to Conversation; 1.3 Towards a Breakthrough; 1.4 Approaches Used in Conversational Informatics; 1.5 Conversational Artifacts; 1.6 Conversational Content; 1.7 Conversational Environment Design; 1.8 Conversation Measurement, Analysis, and Modeling; 1.9 Underlying Methodology; References; Part I Conversational Artifacts; 2 Conversational Agents and the Construction of Humorous Acts; 2.1 Introduction 327 $a2.2 The Role of Humor in Interpersonal Interaction2.3 Embodied Conversation Agents; 2.4 Appropriateness of Humorous Acts in Conversations; 2.5 Humorous Acts and Computational Humor; 2.6 Nonverbal Support for Humorous Acts; 2.7 Methods, Tools, Corpora, and Future Research; 2.8 Conclusions; References; 3 Why Emotions should be Integrated into Conversational Agents; 3.1 Introduction and Motivation; 3.2 How to Conceptualize Emotions; 3.3 Why to Integrate Emotions into Conversational Agents; 3.4 Making the Virtual Human Max Emotional; 3.5 Examples and Experiences; 3.6 Conclusions; References 327 $a4 More Than Just a Friendly Phrase: Multimodal Aspects of Polite Behavior in Agents4.1 Introduction; 4.2 The Augsburg SEMMEL Corpus; 4.3 Employing the Results for ECA Control; 4.4 Evaluating Multimodal Politeness Behavior; 4.5 Conclusions; References; 5 Attentional Behaviors as Nonverbal Communicative Signals in Situated Interactions with Conversational Agents; 5.1 Introduction; 5.2 Related Work; 5.3 Nonverbal Grounding using Attentional Behaviors Towards the Physical World; 5.4 Dialogue Management using Attentional Behaviors Towards; 5.5 Conclusions; References 327 $a6 Attentional Gestures in Dialogues Between People and Robots6.1 Introduction; 6.2 Background and Related Research; 6.3 A Conversational Robot; 6.4 Looking Behaviors for the Robot; 6.5 Nodding at the Robot; 6.6 Lessons Learned; 6.7 Future Directions; References; 7 Dialogue Context for Visual Feedback Recognition; 7.1 Introduction; 7.2 Background and Related Research; 7.3 Context for Visual Feedback; 7.4 Context from Dialogue Manager; 7.5 Framework for Context-based Gesture Recognition; 7.6 Contextual Features; 7.7 Context-based Head Gesture Recognition; 7.8 Conclusions; References 327 $a8 Trading Spaces: How Humans and Humanoids Use Speech and Gesture to Give Directions8.1 Introduction; 8.2 Words and Gestures for Giving Directions; 8.3 Relationship between Form and Meaning of Iconic Gestures in Direction-giving; 8.4 Discussion of Empirical Results; 8.5 Generating Directions with Humanoids; 8.6 Multimodal Microplanning; 8.7 Surface Realization; 8.8 Discussion of Generation Results; 8.9 Conclusions; References; 9 Facial Gestures: Taxonomy and Application of Nonverbal, Nonemotional Facial Displays for Embodied Conversational Agents; 9.1 Introduction 327 $a9.2 Facial Gestures for Embodied Conversational Agents 330 $aConversational informatics investigates human behaviour with a view to designing conversational artifacts capable of interacting with humans in a conversational fashion. It spans a broad array of topics including linguistics, psychology and human-computer interaction. Until recently research in such areas has been carried out in isolation, with no attempt made to connect the various disciplines. Advancements in science and technology have changed this. Conversational Informatics provides an interdisciplinary introduction to conversational informatics and places emphasis upon the in 410 0$aWiley series in agent technology. 606 $aConversation analysis 606 $aConversation analysis$xData processing 606 $aCommunication models 615 0$aConversation analysis. 615 0$aConversation analysis$xData processing. 615 0$aCommunication models. 676 $a302.3/46 701 $aNishida$b T$g(Toyoaki)$060347 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020251903321 996 $aConversational informatics$94421753 997 $aUNINA