LEADER 05604nam 2200733Ia 450 001 9911020202703321 005 20200520144314.0 010 $a9786613282866 010 $a9781283282864 010 $a1283282860 010 $a9781118143780 010 $a1118143787 010 $a9781118143759 010 $a1118143752 010 $a9781118143766 010 $a1118143760 035 $a(CKB)2550000000054432 035 $a(EBL)693744 035 $a(OCoLC)757511646 035 $a(SSID)ssj0000538198 035 $a(PQKBManifestationID)11335194 035 $a(PQKBTitleCode)TC0000538198 035 $a(PQKBWorkID)10557410 035 $a(PQKB)10782690 035 $a(MiAaPQ)EBC693744 035 $a(Perlego)2762773 035 $a(EXLCZ)992550000000054432 100 $a20110517d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aJet single-time Lagrange geometry and its applications /$fVladimir Balan, Mircea Neagu 210 $aHoboken, N.J. $cJohn Wiley & Sons$dc2011 215 $a1 online resource (212 p.) 300 $aDescription based upon print version of record. 311 08$a9781118127551 311 08$a1118127552 320 $aIncludes bibliographical references and index. 327 $aJet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet ?-linear connections; 2.2 Local torsion and curvature d-tensors 327 $a2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal ?-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism 327 $a4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics ?DL1n; 5.2 Geometrical Maxwell equations on ?DL1n; 5.3 Geometrical Einstein equations on ?DL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moo?r metric of order three 327 $a6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moo?r metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moo?r metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moo?r metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moo?r metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures 327 $a7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moo?r metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moo?r metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moo?r metric of order four 327 $a8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four 330 $aDevelops the theory of jet single-time Lagrange geometry and presents modern-day applications Jet Single-Time Lagrange Geometry and Its Applications guides readers through the advantages of jet single-time Lagrange geometry for geometrical modeling. With comprehensive chapters that outline topics ranging in complexity from basic to advanced, the book explores current and emerging applications across a broad range of fields, including mathematics, theoretical and atmospheric physics, economics, and theoretical biology. The authors begin by presenting basic theoretical 606 $aGeometry, Differential 606 $aLagrange equations 606 $aField theory (Physics) 615 0$aGeometry, Differential. 615 0$aLagrange equations. 615 0$aField theory (Physics) 676 $a530.14/3 686 $aMAT012000$2bisacsh 700 $aBalan$b Vladimir$f1958-$01840812 701 $aNeagu$b Mircea$f1973-$01840813 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020202703321 996 $aJet single-time Lagrange geometry and its applications$94420378 997 $aUNINA