LEADER 05354nam 22005533 450 001 9911020190703321 005 20230728080304.0 010 $a9781394229635 010 $a1394229631 010 $a9781394229611 010 $a1394229615 035 $a(MiAaPQ)EBC7275472 035 $a(Au-PeEL)EBL7275472 035 $a(OCoLC)1430211424 035 $a(OCoLC-P)1430211424 035 $a(CaSebORM)9781786308252 035 $a(CKB)27861007800041 035 $a(Perlego)4195923 035 $a(OCoLC)1391443098 035 $a(EXLCZ)9927861007800041 100 $a20230728d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIGA 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$d©2023. 215 $a1 online resource (230 pages) 311 08$aPrint version: Bouclier, Robin IGA: Non-Invasive Coupling with FEM and Regularization of Digital Image Correlation Problems, Volume 2 Newark : John Wiley & Sons, Incorporated,c2023 9781786308252 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. IGA: A Projection of FEM onto a Powerful Reduced Basis -- 1.1. Introduction -- 1.2. Some necessary elements for B-spline andNURBS-based IGA -- 1.2.1.B-spline andNURBS basics -- 1.2.2. k-refinement: increasing both the polynomial degree and the regularity -- 1.2.3. The trimming concept and analysis-suitable model issue -- 1.3.The link between IGAandFEM -- 1.3.1.TheBézier extraction -- 1.3.2.TheLagrangeextraction -- 1.3.3.The extractionin case ofNURBS -- 1.4. Non-invasive implementation using a global bridge between IGA andFEM -- 1.4.1.The commonpractice -- 1.4.2. A fully non-invasive implementation scheme -- 1.5.Numerical experiments -- 1.5.1. Simple but illustrative examples -- 1.5.2. An example of non-invasive nonlinear isogeometric analysis -- 1.6.Summaryand discussion -- 1.7.References -- Chapter 2. Non-invasive Global/Local Hybrid IGA/FEM Coupling -- 2.1. Introduction -- 2.2. Origin of non-invasiveness: a need for industry -- 2.2.1.Several scales of interest -- 2.2.2. Typical coupling techniques in the industry -- 2.2.3. A non-invasive approach as a remedy -- 2.3. General formulation of the coupling and iterative solution -- 2.3.1.Governingequations -- 2.3.2.Weak form and monolithic approach -- 2.3.3.Non-invasiveiterative approach -- 2.4. Interest for the local enrichment of isogeometric models -- 2.4.1. General global-IGA/local-FEM modeling -- 2.4.2.Challenges and implementationissues -- 2.5. Fully non-invasive global-IGA/local-FEM analysis -- 2.5.1. Foundation: non-invasive, non-conforming global/local FEM -- 2.5.2. Extension for the non-invasive hybrid global-IGA/local-FEM coupling -- 2.6.Summaryand discussion -- 2.7.References -- Chapter 3. Non-invasive Spline-based Regularization of FE Digital Image Correlation Problems -- 3.1. Brief introduction. 327 $a3.2. An introduction to the general field of FE-DIC from a numerical point ofview -- 3.2.1. FE-DIC: towards an intimate coupling between measurements and simulations -- 3.2.2. Formulation of DIC: a nonlinear least-squares problem -- 3.2.3.SolutionofDIC: descent algorithms -- 3.2.4.Extensionto stereo-DIC -- 3.2.5.Standardregularizationin FE-DIC -- 3.3. Multilevel and non-invasive CAD-based shape measurement -- 3.3.1. Inspiration: structural shape optimization -- 3.3.2. The proposed multilevel geometric and non-invasive scheme -- 3.3.3. Validation through a real example -- 3.3.4.Summaryand discussion -- 3.4.AsplineFFD-based regularizationforFE-DIC -- 3.4.1. The FFD-DIC methodology -- 3.4.2. Application for the displacement measurement of a 2D beam -- 3.4.3. Application to mesh-based shape measurement -- 3.4.4.Summaryand discussion -- 3.5.References -- Index -- EULA. 330 $aIsogeometric analysis (IGA) consists of using the same higher-order and smooth spline functions for the representation of geometry in Computer Aided Design as for the approximation of solution fields in Finite Element Analysis. Now, almost twenty years after its creation, substantial works are being reported in IGA, making it very competitive in scientific computing. This book proposes to use IGA jointly with standard finite element methods (FEM), presenting IGA as a projection of FEM on a more regular reduced basis. By shedding new light on how IGA relates to FEM, we can see how IGA can be implemented on top of an FE code in order to improve the solution of problems that require more regularity. This is illustrated by using IGA with FEM in a non-invasive fashion to perform efficient and robust multiscale global/local simulations in solid mechanics. Furthermore, we show that IGA can regularize the inverse problem of FE digital image correlation in experimental mechanics. 606 $aIsogeometric analysis 606 $aFinite element method$xData processing 615 0$aIsogeometric analysis. 615 0$aFinite element method$xData processing. 676 $a518/.25 700 $aBouclier$b Robin$01641973 701 $aPassieux$b Jean-Charles$01331099 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020190703321 996 $aIGA$94420820 997 $aUNINA