LEADER 01585nam 2200409 c 450 001 9910705173003321 005 20140214141752.0 035 $a(CKB)5470000002447624 035 $a(OCoLC)870538095 035 $a(EXLCZ)995470000002447624 100 $a20140214d1988 ua 0 101 0 $aeng 135 $aurmn||||a|||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aChanges in financial profile of cooperatives handling grain $e[first-handlers with $5 million or more in sales, 1985 and 1983] /$fDavid E. Cummins and Francis P. Yager 210 1$aWashington, D.C. :$cUnited States Department of Agriculture, Agricultural Cooperative Service,$d1988. 215 $a1 online resource (ix, 42 pages) $cillustrations, map 225 1 $aACS research report ;$vno. 76 300 $a"October 1988." 300 $aTitle from title screen (viewed on Feb. 14, 2014). 320 $aIncludes bibliographical references (pages 38-39). 517 $aChanges in financial profile of cooperatives handling grain 606 $aGrain$xCooperative marketing$zUnited States 606 $aGrain$zUnited States$xCosts 615 0$aGrain$xCooperative marketing 615 0$aGrain$xCosts. 700 $aCummins$b David E$g(David Earl),$f1938-$01388700 702 $aYager$b Francis P. 712 02$aUnited States.$bAgricultural Cooperative Service, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910705173003321 996 $aChanges in financial profile of cooperatives handling grain$93512623 997 $aUNINA LEADER 02482nam 2200493 450 001 9910826481403321 005 20230721042500.0 010 $a1-4522-3777-8 010 $a1-4522-2326-2 035 $a(CKB)3710000000456731 035 $a(EBL)1051658 035 $a(OCoLC)922904233 035 $a(MiAaPQ)EBC1051658 035 $a(EXLCZ)993710000000456731 100 $a20150813h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMore best practices for elementary classrooms $ewhat award-winning teachers do /$fRandi Stone 210 1$aThousand Oaks, California :$cCorwin :$cNAESP,$d2009. 210 4$dİ2009 215 $a1 online resource (264 p.) 300 $aDescription based upon print version of record. 311 $a1-4129-6346-X 320 $aIncludes bibliographical references at the end of each chapters. 327 $a""Cover""; ""Contents""; ""Preface""; ""About the Author""; ""About the Contributors""; ""Part I - Classroom Practices Across the Curriculum""; ""Chapter 1 - Classroom Management, Scheduling, and Community Involvement""; ""Chapter 2 - Differentiating Instruction in Regular and Inclusive Classrooms""; ""Chapter 3 - Using Technology in the Classroom""; ""Part II - Teaching Science and Math""; ""Chapter 4 - Teaching Science""; ""Chapter 5 - Teaching Math""; ""Part III - Teaching Reading and Writing""; ""Chapter 6 - Teaching Reading""; ""Chapter 7 - Teaching Writing"" 327 $a""Part IV - Teaching Social Studies, Music, Art, and Physical Education""""Chapter 8 - Teaching Social Studies""; ""Chapter 9 - Teaching Music, Art, and Physical Education"" 330 $aIn this sequel to Randi Stone's Best Classroom Practices, award-winning elementary teachers showcase their best strategies for classroom management, instruction, involving parents, and making inclusion work. 606 $aElementary school teachers$zUnited States$vCase studies 606 $aElementary school teaching$zUnited States$vCase studies 615 0$aElementary school teachers 615 0$aElementary school teaching 676 $a372.1102 700 $aStone$b Randi$01606785 701 $aStone$b Randi$01606785 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826481403321 996 $aMore best practices for elementary classrooms$94115807 997 $aUNINA LEADER 11782nam 22005653 450 001 9911020092403321 005 20240721090305.0 010 $a9783527837021 010 $a3527837027 010 $a9783527837007 010 $a3527837000 035 $a(MiAaPQ)EBC31534251 035 $a(Au-PeEL)EBL31534251 035 $a(CKB)33030947200041 035 $a(Exl-AI)31534251 035 $a(EXLCZ)9933030947200041 100 $a20240721d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aChemical Physics of Polymer Nanocomposites $eProcessing, Morphology, Structure, Thermodynamics, Rheology 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (1062 pages) 311 08$a9783527349579 311 08$a352734957X 327 $aCover -- Volume I -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Classification of Nanofillers, Nano?Objects, Nanomaterials, and Polymer Nanocomposites Based on Chemical Nature and Identity -- 1.1 Classification of Nanocomposites -- 1.2 Classification of Nanofillers -- 1.3 Classification of Nano?Objects and Nanomaterials -- 1.4 Production Method and Existing Form of Nano?Objects -- 1.5 Classification of Polymer Nanocomposites -- 1.6 Summaries -- References -- Chapter 2 Biological and Chemical Synthesis of Nanoparticles -- 2.1 Introduction -- 2.2 Synthesis Approach of Nanoparticles -- 2.2.1 Bottom?Up Approach -- 2.2.1.1 Non?Biological Synthesis of Nanoparticles -- 2.2.2 Top?Down Approach -- 2.2.2.1 Spinning Methods -- 2.2.2.2 Template Based Synthesis -- 2.2.2.3 Chemical Vapor Deposition -- 2.2.2.4 Laser Pyrolysis Synthesis of Nanoparticles -- 2.2.2.5 Flame Spray Pyrolysis Synthesis of Nanoparticles -- 2.2.2.6 Inert Gas Condensation -- 2.2.2.7 Laser Ablation -- 2.2.2.8 Mechanical Milling -- 2.2.2.9 Chemical Etching -- 2.2.2.10 Electro?Explosion of Wire -- 2.2.3 Biological Synthesis of Nanoparticles -- 2.2.3.1 Bacteria Mediated Nanoparticles -- 2.2.3.2 Fungi Mediated Nanoparticles -- 2.2.3.3 Yeasts Mediated Nanoparticles -- 2.2.3.4 Algae Mediated Nanoparticles -- 2.2.3.5 Plant?Mediated Nanoparticles -- 2.3 Conclusion -- References -- Chapter 3 Using In situ Polymerization for Manufacturing of Polymer Nanocellulose -- 3.1 Introduction -- 3.2 In situ Polymerization -- 3.3 Cellulose Nanoparticles -- 3.4 Polymer Nanocellulose -- 3.5 Method of Polymer Nanocomposite Processing -- 3.5.1 Solvent Casting and Evaporation -- 3.5.2 Coating Polymerization Process -- 3.5.3 Melt Processing -- 3.5.4 Radical Polymerization -- 3.5.5 Other Methods -- 3.6 Applications of In situ Polymerization Methods for the Production of Nanocellulose Materials. 327 $a3.7 Future of In situ Polymerization Manufacturing Processes -- 3.8 Conclusion -- References -- Chapter 4 Manufacturing of Nanocomposites by Electrospinning -- 4.1 Introduction -- 4.2 Electrospinning Process -- 4.2.1 Principles of the Process -- 4.2.2 Solution Parameters -- 4.2.2.1 Concentration and Viscosity of Solution -- 4.2.2.2 Surface Tension -- 4.2.2.3 Conductivity of Solution -- 4.2.2.4 Polymer Molecular Weight -- 4.2.2.5 Addition of Inorganic Components -- 4.2.2.6 Applied Voltage -- 4.2.2.7 Receiving Distance -- 4.2.2.8 Feed Rate -- 4.2.2.9 Electrospinning Type/Principle/Spinneret -- 4.2.2.10 Receiver Morphology/Specification -- 4.2.3 Environmental Parameters -- 4.2.3.1 Temperature -- 4.2.3.2 Humidity -- 4.3 Fiber Type -- 4.3.1 Organic Polymers (Natural Polymers, Synthetic Polymers) -- 4.3.1.1 Natural Polymers -- 4.3.1.2 Synthetic Polymers -- 4.3.2 Inorganic Materials -- 4.3.2.1 Carbon Nanofibers -- 4.3.2.2 Metal Oxide Nanofibers -- 4.3.2.3 Metal Nanofibers -- 4.4 Electrospinning of Nanocomposite -- 4.4.1 Polymer/Polymer -- 4.4.2 Polymer/Inorganic -- 4.4.3 Inorganic/Inorganic -- 4.5 Application -- 4.5.1 Filtration -- 4.5.2 E?spun Nanofibers for Hazardous Substances Adsorption -- 4.5.3 E?spun Nanofibers for Bioengineering Separation -- 4.5.4 E?spun Nanofibers for Insulation -- 4.5.5 Medical/Biological Applications -- 4.5.6 Catalysis -- 4.5.7 Energy Conversion and Storage -- 4.5.8 Triboelectric Nanogenerator -- 4.6 Summary and Outlook -- References -- Chapter 5 Polymer Nanocomposites Based on Metal Oxide Nanoplatelets -- 5.1 Introduction -- 5.2 Polymers -- 5.2.1 Polymer Structure -- 5.2.2 Design Approaches to Polymers -- 5.2.2.1 Surface?initiated Atom?Transfer Radical Polymerization (SI?ATRP) -- 5.2.2.2 Surface?initiated Reversible Addition-Fragmentation Chain?Transfer (SI?RAFT) Strategy -- 5.3 Properties of Nanoplatelets (NPLs). 327 $a5.3.1 Applications of Nanoplatelets -- 5.4 Polymer-Metal Oxide Nanocomposite Materials -- 5.4.1 Properties of Polymer-Metal Oxide Nanocomposites -- 5.4.1.1 Electrical Properties -- 5.4.1.2 Optical Properties -- 5.4.1.3 Thermal Properties -- 5.4.1.4 Mechanical Properties -- 5.4.2 Designs of Polymer-Metal Oxide Composites -- 5.4.3 Synthesis Methods of Polymer-Metal Oxide Composites -- 5.4.3.1 Blending/Mixing -- 5.4.3.2 In situ polymerization -- 5.4.3.3 Sol-Gel Process -- 5.5 General Applications of Polymer-Metal Oxide Composites -- 5.5.1 Applications of Polymer-Metal Oxide Composites in Sensors -- 5.5.2 Applications of Polymer-Metal Oxide Composites in Supercapacitors -- 5.6 Conclusion -- Acknowledgments -- References -- Chapter 6 Polymer Nanocomposites Filled in Carbon Nanotubes: Properties and Applications -- 6.1 Introduction -- 6.1.1 Polymer Nanocomposites -- 6.1.2 Carbon Nanotubes -- 6.1.2.1 Functionalization of CNTs -- 6.1.3 Potential Uses of CNT?based Polymer Nanocomposites -- 6.1.4 Some Examples of Thermoplastics Used as Nanocomposite Matrix -- 6.1.4.1 Poly (Trimethylene Terephthalate) -- 6.1.4.2 Acrylonitrile Butadiene Styrene -- 6.1.4.3 Polycarbonate -- 6.1.4.4 Poly (Lactic Acid) -- 6.2 Experimental Section: Production of Nanocomposites Filled CNT -- 6.2.1 CNT Functionalization -- 6.2.2 Polyester?based CNT Nanocomposites: PTT/CNT -- 6.2.3 Blend?based CNT Nanocomposites: PTT/ABS/CNT -- 6.2.4 Blend?based CNT Nanocomposites: PC/ABS/CNT -- 6.2.4.1 Injection Molding Process -- 6.2.5 Mechanical, Electrical Characterization and Morphology -- 6.3 Results and Discussion -- 6.3.1 CNT Functionalization -- 6.3.2 Electrical and Mechanical Properties of CNT/Polymer Nanocomposites -- 6.3.3 Electrical and Mechanical Properties of Polymer Blends?based CNT Nanocomposites -- 6.3.3.1 PTT/ABS/MWCNT Films -- 6.3.3.2 PC/ABS/MWCNT Injection Molded Samples. 327 $a6.4 Conclusions -- Acknowledgments -- References -- Chapter 7 Polymer Nanocomposites Filled in Nanocellulose and Cellulose?whiskers -- 7.1 Introduction -- 7.2 Nanocellulose: Extraction, Types, and Application -- 7.3 Polymers Nanocomposites -- 7.3.1 Thermoplastic -- 7.3.2 Thermosetting -- 7.3.3 Elastomers -- 7.4 Nanocellulose Nanocomposite Applications -- 7.5 Processing: Different Approaches and Dispersion Methods of Nanocellulose -- 7.6 Future Trends and Perspectives -- Acknowledgments -- References -- Chapter 8 Polymer Nanocomposites Based on Nano Chitin -- 8.1 Introduction -- 8.2 Top?Down Approach for the Preparation of Nanochitins -- 8.3 Top?Down Approach for the Preparation of Nanochitin/Polymer Composites -- 8.4 Bottom?Up Approach for the Preparation of Nanochitins -- 8.5 Bottom?Up Approach for the Preparation of Nanochitin/Polymer Composites -- 8.6 Conclusions -- Acknowledgment -- References -- Chapter 9 Nanostarch?Filled Polymer Nanocomposites -- 9.1 Introduction -- 9.2 Nanostarch -- 9.2.1 Starch Nanocrystals (SNCs) -- 9.2.2 Amorphous Starch Nanoparticles (SNPs) -- 9.2.3 Nanostarch Functionalization -- 9.3 Nanostarch?Filled Nanocomposites from Synthetic Polymers -- 9.4 Nanostarch?Filled Nanocomposites from Natural Polymers -- 9.4.1 Nanostarch?Filled Starch?Based Nanocomposites -- 9.4.1.1 Applications of Nanostarch-Starch Nanocomposites in Food Packaging -- 9.5 Regulatory Aspects -- 9.6 Summary and Future Perspectives -- References -- Chapter 10 Polymer Nanocomposites Based on Nanolignin: Preparation, Properties, and Applications -- 10.1 Introduction -- 10.2 Extraction of Lignin -- 10.3 Preparation of Nanolignin and Lignin Nanoparticles -- 10.3.1 Antisolvent Precipitation -- 10.3.1.1 Acid Solution as Antisolvent -- 10.3.1.2 Supercritical CO2 as Antisolvent -- 10.3.2 Physiochemical Preparation of Lignin Nanoparticles -- 10.3.2.1 Homogenization. 327 $a10.3.2.2 Ultrasonication -- 10.3.3 Ice Segregation?induced Self?assembly -- 10.3.4 Electrospinning of Solutions -- 10.3.5 Aerosol Flow Synthesis -- 10.4 Properties of Nanolignin -- 10.5 Nanolignin Based Nanocomposites -- 10.5.1 Thermoplastic-Lignin Nanocomposites -- 10.5.2 Thermoset-Lignin Nanocomposites -- 10.5.2.1 Formaldehyde?Based Thermoset-Lignin Nanocomposite -- 10.5.2.2 Epoxy?Based Thermoset-Lignin Nanocomposite -- 10.5.3 Elastomer- Lignin Nanocomposites -- 10.5.3.1 Natural Rubber?Based Elastomer-Lignin Nanocomposite -- 10.5.3.2 Synthetic Rubber?Based Elastomer-Lignin Nanocomposite -- 10.6 Applications of Nanolignin and Lignin Nanocomposites -- 10.6.1 Antibacterial Effect -- 10.6.2 Reinforcing Materials -- 10.6.3 Anti?ultraviolet Effect -- 10.6.4 Food Packaging Films -- 10.6.5 Green Synthesis of Phenol?formaldehyde -- 10.6.6 Lignin Composite Foam -- 10.6.7 Future Trends -- 10.7 Conclusions -- References -- Chapter 11 Polymer Nanocomposites Based on Talc -- 11.1 Introduction -- 11.2 Talc -- 11.2.1 General Aspects -- 11.2.2 Geology -- 11.3 Talc/Polymer Nanocomposites Compounding -- 11.4 Influence of Talc Characteristics and Concentration on Polymer Nanocomposites Properties -- 11.4.1 Particle Morphology -- 11.4.2 Particle Size -- 11.4.3 Degree of Purity -- 11.4.4 Nucleating Capability -- 11.4.5 Particle Concentration -- 11.5 Chemical Modifications of Talc -- 11.6 Influence of Talc Surface Treatments on Polymer Nanocomposites Properties -- 11.7 Industrial Applications -- 11.8 Concluding Remarks -- References -- Volume II -- Title Page -- Copyright -- Contents -- Preface -- Chapter 12 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.1 Introduction -- 12.2 Graphene and Oxide Graphene -- 12.3 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.3.1 Obtention of Polymer Nanocomposites Based on Graphene and Graphene Oxide. 327 $a12.3.2 Structural Advantages of Graphene?Polymer Nanocomposites. 330 $aThis comprehensive volume focuses on the chemical physics of polymer processing, emphasizing morphology, structure, and rheology. Edited by Vera V. Myasoedova, Sabu Thomas, and Hanna J. Maria, it offers a detailed exploration of the classification, synthesis, and applications of polymers enhanced by various nanomaterials. The book covers a range of topics, including the use of nanofillers, nanoparticles, and nanocellulose in polymers, with discussions on their chemical properties and processing techniques. It aims to provide researchers, academics, and industry professionals with valuable insights into advanced polymer manufacturing methods and their applications in fields such as biomedical engineering and energy storage.$7Generated by AI. 606 $aPolymers$7Generated by AI 606 $aNanotechnology$7Generated by AI 615 0$aPolymers 615 0$aNanotechnology 700 $aMyasoedova$b Vera V$01838971 701 $aThomas$b Sabu$0851308 701 $aMaria$b Hanna J$01838972 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020092403321 996 $aChemical Physics of Polymer Nanocomposites$94418079 997 $aUNINA