LEADER 01315nam0 22003131i 450 001 UON00080157 005 20231205102425.956 010 $a38-606-4556-0 100 $a20020107d1997 |0itac50 ba 101 $ager 102 $aDE 105 $a|||| ||||| 200 1 $aˆDas ‰Mashafa Mar Yeshaq von Ninive$eEinleitung, edition und Ubersetzung mit Kommentar$f[Mar Ishaq]$gDawit Berhanu 205 $aHamburg : Kovac$bc1997 210 $a304 p.$a22 cm 215 $aTesto anche in etiopico 316 $aInseriti tre fogli$5IT-UONSI AFRFONDORICCI/584 606 $aMONACHESIMO ETIOPICO$3UONC022379$2FI 620 $aDE$dHamburg$3UONL003222 676 $a291.657$cMONACHESIMO$v21 700 0$aMAR Ishaq$3UONV052696$0661331 702 1$aBERHANU$bDawit$3UONV052697 712 $aKova?$3UONV258860$4650 801 $aIT$bSOL$c20240220$gRICA 912 $aUON00080157 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI AFR FONDO RICCI 584 $eSI 40884 7 584 Inseriti tre fogli$sBuono 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI ET VII E a 018 $eSI AA 20529 7 018 996 $aMashafa Mar Yeshaq von Ninive$91301800 997 $aUNIOR LEADER 01036nam0 22002891i 450 001 UON00046003 005 20231205102206.522 010 $a34-301-3212-6 100 $a20020107d1971 |0itac50 ba 101 $ager 102 $aDE 105 $a|||| 1|||| 200 1 $aˆDie ‰Wirtschaft Japans$fherausgegeben von Hans-Bernd Giesler 210 $aDusseldorf$aWien$cEcon Verlag$d1971 215 $a238 p.$d23 cm 606 $aEconomia$xGiappone$3UONC001044$2FI 620 $aDE$dDüsseldorf$3UONL000307 620 $aAT$dWien$3UONL003140 686 $aGIA XII$cGIAPPONE - ECONOMIA$2A 700 1$aGIESLER$bHans-Bernd$3UONV029250$0649496 712 $aEcon$3UONV253266$4650 801 $aIT$bSOL$c20250711$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00046003 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI GIA XII 223 N $eSI G 3335 7 223 N 996 $aWirtschaft Japans$91156328 997 $aUNIOR LEADER 12190nam 22005893 450 001 9911020068103321 005 20240114090223.0 010 $a9781394180523 010 $a1394180527 010 $a9781394180509 010 $a1394180500 035 $a(MiAaPQ)EBC31064165 035 $a(Au-PeEL)EBL31064165 035 $a(CKB)29574978400041 035 $a(Exl-AI)31064165 035 $a(OCoLC)1417758678 035 $a(EXLCZ)9929574978400041 100 $a20240114d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNext Generation Multiple Access 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (624 pages) 311 08$aPrint version: Liu, Yuanwei Next Generation Multiple Access Newark : John Wiley & Sons, Incorporated,c2024 9781394180493 327 $aCover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Next Generation Multiple Access Toward 6G -- 1.1 The Road to NGMA -- 1.2 Non?Orthogonal Multiple Access -- 1.3 Massive Access -- 1.4 Book Outline -- Part I Evolution of NOMA Towards NGMA -- Chapter 2 Modulation Techniques for NGMA/NOMA -- 2.1 Introduction -- 2.2 Space?Domain IM for NGMA -- 2.2.1 SM?Based NOMA -- 2.2.1.1 Multi?RF Schemes -- 2.2.1.2 Single?RF Schemes -- 2.2.1.3 Recent Developments in SM?NOMA -- 2.2.2 RSM?Based NOMA -- 2.2.3 SM?Aided SCMA -- 2.3 Frequency?Domain IM for NGMA -- 2.3.1 NOMA with Frequency?Domain IM -- 2.3.1.1 OFDM?IM NOMA -- 2.3.1.2 DM?OFDM NOMA -- 2.3.2 C?NOMA with Frequency?Domain IM -- 2.3.2.1 Broadcast Phase -- 2.3.2.2 Cooperative Phase -- 2.4 Code?Domain IM for NGMA -- 2.4.1 CIM?SCMA -- 2.4.2 CIM?MC?CDMA -- 2.5 Power?Domain IM for NGMA -- 2.5.1 Transmission Model -- 2.5.1.1 Two?User Case -- 2.5.1.2 Multiuser Case -- 2.5.2 Signal Decoding -- 2.5.3 Performance Analysis -- 2.6 Summary -- References -- Chapter 3 NOMA Transmission Design with Practical Modulations -- 3.1 Introduction -- 3.2 Fundamentals -- 3.2.1 Multichannel Downlink NOMA -- 3.2.2 Practical Modulations in NOMA -- 3.3 Effective Throughput Analysis -- 3.3.1 Effective Throughput of the Single?User Channels -- 3.3.2 Effective Throughput of the Two?User Channels -- 3.4 NOMA Transmission Design -- 3.4.1 Problem Formulation -- 3.4.2 Power Allocation -- 3.4.2.1 Power Allocation within Channels -- 3.4.2.2 Power Budget Allocation Among Channels -- 3.4.3 Joint Resource Allocation -- 3.5 Numerical Results -- 3.6 Conclusion -- References -- Chapter 4 Optimal Resource Allocation for NGMA -- 4.1 Introduction -- 4.2 Single?Cell Single?Carrier NOMA -- 4.2.1 Total Power Minimization Problem -- 4.2.2 Sum?Rate Maximization Problem. 327 $a4.2.3 Energy?Efficiency Maximization Problem -- 4.2.4 Key Features and Implementation Issues -- 4.2.4.1 CSI Insensitivity -- 4.2.4.2 Rate Fairness -- 4.3 Single?Cell Multicarrier NOMA -- 4.3.1 Total Power Minimization Problem -- 4.3.2 Sum?Rate Maximization Problem -- 4.3.3 Energy?Efficiency Maximization Problem -- 4.3.4 Key Features and Implementation Issues -- 4.4 Multi?cell NOMA with Single?Cell Processing -- 4.4.1 Dynamic Decoding Order -- 4.4.1.1 Optimal JSPA for Total Power Minimization Problem -- 4.4.1.2 Optimal JSPA for Sum?Rate Maximization Problem -- 4.4.1.3 Optimal JSPA for EE Maximization Problem -- 4.4.2 Static Decoding Order -- 4.4.2.1 Optimal FRPA for Total Power Minimization Problem -- 4.4.2.2 Optimal FRPA for Sum?Rate Maximization Problem -- 4.4.2.3 Optimal FRPA for EE Maximization Problem -- 4.4.2.4 Optimal JRPA for Total Power Minimization Problem -- 4.4.2.5 Suboptimal JRPA for Sum?Rate Maximization Problem -- 4.4.2.6 Suboptimal JRPA for EE Maximization Problem -- 4.5 Numerical Results -- 4.5.1 Approximated Optimal Powers -- 4.5.2 SC?NOMA versus FDMA-NOMA versus FDMA -- 4.5.3 Multi?cell NOMA: JSPA versus JRPA versus FRPA -- 4.6 Conclusions -- Acknowledgments -- References -- Chapter 5 Cooperative NOMA -- 5.1 Introduction -- 5.2 System Model for D2MD?CNOMA -- 5.2.1 System Configuration -- 5.2.2 Channel Model -- 5.3 Adaptive Aggregate Transmission -- 5.3.1 First Phase -- 5.3.2 Second Phase -- 5.4 Performance Analysis -- 5.4.1 Outage Probability -- 5.4.2 Ergodic Sum Capacity -- 5.5 Numerical Results and Discussion -- 5.5.1 Outage Probability -- 5.5.2 Ergodic Sum Capacity -- 5.A.1 Proof of Theorem 5.1 -- References -- Chapter 6 Multi?scale?NOMA: An Effective Support to Future Communication-Positioning Integration System -- 6.1 Introduction -- 6.2 Positioning in Cellular Networks -- 6.3 MS?NOMA Architecture -- 6.4 Interference Analysis. 327 $a6.4.1 Single?Cell Network -- 6.4.1.1 Interference of Positioning to Communication -- 6.4.1.2 Interference of Communication to Positioning -- 6.4.2 Multicell Networks -- 6.4.2.1 Interference of Positioning to Communication -- 6.4.2.2 Interference of Communication to Positioning -- 6.5 Resource Allocation -- 6.5.1 The Constraints -- 6.5.1.1 The BER Threshold Under QoS Constraint -- 6.5.1.2 The Total Power Limitation -- 6.5.1.3 The Elimination of Near?Far Effect -- 6.5.2 The Proposed Joint Power Allocation Model -- 6.5.3 The Positioning-Communication Joint Power Allocation Scheme -- 6.5.4 Remarks -- 6.6 Performance Evaluation -- 6.6.1 Communication Performance -- 6.6.2 Ranging Performance -- 6.6.3 Resource Consumption of Positioning -- 6.6.3.1 Achievable Positioning Measurement Frequency -- 6.6.3.2 The Resource Element Consumption -- 6.6.3.3 The Power Consumption -- 6.6.4 Positioning Performance -- 6.6.4.1 Comparison by Using CP4A and the Traditional Method -- 6.6.4.2 Comparision Between MS?NOMA and PRS -- References -- Chapter 7 NOMA?Aware Wireless Content Caching Networks -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 System Description -- 7.2.2 Content Request Model -- 7.2.3 Random System State -- 7.2.4 System Latency Under Each Random State -- 7.2.5 System's Average Latency -- 7.3 Algorithm Design -- 7.3.1 User Pairing and Power Control Optimization -- 7.3.2 Cache Placement -- 7.3.3 Recommendation Algorithm -- 7.3.4 Joint Optimization Algorithm and Property Analysis -- 7.4 Numerical Simulation -- 7.4.1 Convergence Performance -- 7.4.2 System's Average Latency -- 7.4.3 Cache Hit Ratio -- 7.5 Conclusion -- References -- Chapter 8 NOMA Empowered Multi?Access Edge Computing and Edge Intelligence -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 System Model and Formulation -- 8.3.1 Modeling of Two?Sided Dual Offloading. 327 $a8.3.2 Overall Latency Minimization -- 8.4 Algorithms for Optimal Offloading -- 8.5 Numerical Results -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Exploiting Non?orthogonal Multiple Access in Integrated Sensing and Communications -- 9.1 Introduction -- 9.2 Developing Trends and Fundamental Models of ISAC -- 9.2.1 ISAC: From Orthogonality to Non?orthogonality -- 9.2.2 Downlink ISAC -- 9.2.3 Uplink ISAC -- 9.3 Novel NOMA Designs in Downlink and Uplink ISAC -- 9.3.1 NOMA?Empowered Downlink ISAC Design -- 9.3.2 Semi?NOMA?Based Uplink ISAC Design -- 9.4 Case Study: System Model and Problem Formulation -- 9.4.1 System Model -- 9.4.1.1 Communication Model -- 9.4.1.2 Sensing Model -- 9.4.2 Problem Formulation -- 9.5 Case Study: Proposed Solutions -- 9.6 Case Study: Numerical Results -- 9.6.1 Convergence of Algorithm 9.1 -- 9.6.2 Baseline -- 9.6.3 Transmit Beampattern -- 9.7 Conclusions -- References -- Part II Massive Access for NGMA -- Chapter 10 Capacity of Many?Access Channels -- 10.1 Introduction -- 10.2 The Many?Access Channel Model -- 10.3 Capacity of the MnAC -- 10.3.1 The Equal?Power Case -- 10.3.2 Heterogeneous Powers and Fading -- 10.4 Energy Efficiency of the MnAC -- 10.4.1 Minimum Energy per Bit for Given PUPE -- 10.4.2 Capacity per Unit?Energy Under Different Error Criteria -- 10.5 Discussion and Open Problems -- 10.5.1 Scaling Regime -- 10.5.2 Some Practical Issues -- Acknowledgments -- References -- Chapter 11 Random Access Techniques for Machine?Type Communication -- 11.1 Fundamentals of Random Access -- 11.1.1 Coordinated Versus Uncoordinated Transmissions -- 11.1.2 Random Access Techniques -- 11.1.2.1 ALOHA Protocols -- 11.1.2.2 CSMA -- 11.1.3 Re?transmission Strategies -- 11.2 A Game Theoretic View -- 11.2.1 A Model -- 11.2.2 Fictitious Play -- 11.3 Random Access Protocols for MTC -- 11.3.1 4?Step Random Access. 327 $a11.3.2 2?Step Random Access -- 11.3.3 Analysis of 2?Step Random Access -- 11.3.4 Fast Retrial -- 11.4 Variants of 2?Step Random Access -- 11.4.1 2?Step Random Access with MIMO -- 11.4.2 Sequential Transmission of Multiple Preambles -- 11.4.3 Simultaneous Transmission of Multiple Preambles -- 11.4.4 Preambles for Exploration -- 11.5 Application of NOMA to Random Access -- 11.5.1 Power?Domain NOMA -- 11.5.2 S?ALOHA with NOMA -- 11.5.3 A Generalization with Multiple Channels -- 11.5.4 NOMA?ALOHA Game -- 11.6 Low?Latency Access for MTC -- 11.6.1 Long Propagation Delay -- 11.6.2 Repetition Diversity -- 11.6.3 Channel Coding?Based Random Access -- References -- Chapter 12 Grant?Free Random Access via Compressed Sensing: Algorithm and Performance -- 12.1 Introduction -- 12.2 Joint Device Detection, Channel Estimation, and Data Decoding with Collision Resolution for MIMO Massive Unsourced Random Access -- 12.2.1 System Model and Encoding Scheme -- 12.2.1.1 System Model -- 12.2.1.2 Encoding Scheme -- 12.2.2 Collision Resolution Protocol -- 12.2.3 Decoding Scheme -- 12.2.3.1 Joint DAD?CE Algorithm -- 12.2.3.2 MIMO?LDPC?SIC Decoder -- 12.2.4 Experimental Results -- 12.3 Exploiting Angular Domain Sparsity for Grant?Free Random Access: A Hybrid AMP Approach -- 12.3.1 Sparse Modeling of Massive Access -- 12.3.2 Recovery Algorithm -- 12.3.2.1 Application to Unsourced Random Access -- 12.3.3 Experimental Results -- 12.4 LEO Satellite?Enabled Grant?Free Random Access -- 12.4.1 System Model -- 12.4.1.1 Channel Model -- 12.4.1.2 Signal Modulation -- 12.4.1.3 Problem Formulation -- 12.4.2 Pattern Coupled SBL Framework -- 12.4.2.1 The Pattern?Coupled Hierarchical Prior -- 12.4.2.2 SBL Framework -- 12.4.3 Experimental Results -- 12.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Algorithm Unrolling for Massive Connectivity in IoT Networks. 327 $a13.1 Introduction. 330 $aThis book, 'Next Generation Multiple Access,' edited by Yuanwei Liu, Liang Liu, Zhiguo Ding, and Xuemin Shen, provides an in-depth exploration of advanced multiple access techniques crucial for the development of 6G wireless communication networks. It covers a range of topics including modulation techniques, resource allocation, cooperative non-orthogonal multiple access (NOMA), and the integration of edge computing and intelligence. The book aims to offer insights into the evolving landscape of wireless communications, focusing on the massive and diverse connectivity needs anticipated in future networks. The authors present cutting-edge research and practical solutions to challenges in achieving efficient and scalable access methods. Targeted primarily at researchers, engineers, and professionals in telecommunications, the book serves as a comprehensive resource for understanding and developing next-generation access technologies.$7Generated by AI. 606 $a6G mobile communication systems$7Generated by AI 606 $aMultiple access protocols (Computer network protocols)$7Generated by AI 615 0$a6G mobile communication systems 615 0$aMultiple access protocols (Computer network protocols) 676 $a004.62 700 $aLiu$b Yuanwei$0957695 701 $aLiu$b Liang$0762260 701 $aDing$b Zhiguo$01838772 701 $aShen$b Xuemin$01605727 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020068103321 996 $aNext Generation Multiple Access$94417832 997 $aUNINA