LEADER 09115nam 22005533 450 001 9911020043603321 005 20240521091126.0 010 $a9781119904953 010 $a1119904951 010 $a9781119904960 010 $a111990496X 035 $a(MiAaPQ)EBC31246934 035 $a(Au-PeEL)EBL31246934 035 $a(CKB)31320186400041 035 $a(Exl-AI)31246934 035 $a(OCoLC)1428904541 035 $a(EXLCZ)9931320186400041 100 $a20240405d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Redox Flow Technology 205 $a1st ed. 210 $cJohn Wiley & Sons, Inc$d2024 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (266 pages) 311 08$a9781119904793 311 08$a111990479X 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Membranes for Redox Flow Batteries -- 1.1 Introduction -- 1.2 Membranes Used in Aqueous Organic Redox Flow Batteries -- 1.2.1 Classification of Membranes Used in Aqueous Organic RFBs -- 1.2.1.1 Nafion-Based Membranes -- 1.2.1.2 Microporous Membranes -- 1.2.1.3 Anion-Exchange Membranes (AEMs) -- 1.2.1.4 Cation Exchange Membranes (CEMs) -- 1.3 Membranes Used in Non-Aqueous Redox Flow Batteries (NARFBs) -- 1.3.1 Stability of Membrane in Diverse Solvents -- 1.3.2 Ionic Permeability and Selectivity -- 1.3.3 Ionic Conductivity -- 1.3.4 Swelling -- 1.3.5 Mechanical and Chemical Stability -- 1.3.6 Cycling Performance -- 1.3.7 Classification of Membranes Used in NARFBs -- 1.3.7.1 Dense Membranes -- 1.3.7.2 Dense Ceramic Membranes -- 1.3.7.3 Porous Membranes -- 1.4 Ion-Exchange Membranes or Ion-Conducting Membranes for RFBs -- 1.4.1 Cation Ion Exchange Membrane (CEMs) -- 1.4.2 Anion Exchange Membrane (AEMs) -- 1.4.2.1 Preparation by Condensation Reaction of Ionic Monomeric Compounds -- 1.4.2.2 Preparation by Polymerization of Vinyl Monomers -- 1.4.2.3 Preparation from Conventional Polymers -- 1.4.2.4 Preparation by Plasma Polymerization -- 1.5 Polymer Electrolyte Membranes -- 1.5.1 Membrane Properties -- 1.5.1.1 Ion Exchange Capacity -- 1.5.1.2 Chemical Stability -- 1.5.1.3 Thermal Stability -- 1.5.1.4 Mechanical Property -- 1.5.1.5 Ionic Conductivity -- 1.5.1.6 Vanadium Ion Permeability -- 1.5.1.7 Water or Electrolyte Uptake -- 1.5.2 Transport Mechanisms -- 1.5.2.1 Proton Transport -- 1.5.2.2 Vanadium Ion Transport -- 1.5.2.3 Water (H2O) Transport -- 1.5.3 Membrane Preparation -- 1.5.3.1 Cation-Exchange Membrane (CEM) -- 1.5.4 Anion-Exchange Membrane -- 1.5.4.1 Polysulfone (PSF) -- 1.5.4.2 Poly(aryl-ether-ketone) (PAEK) -- 1.5.5 Amphoteric Membranes -- 1.5.6 Porous Membrane. 327 $a1.5.7 Polybenzimidazole (PBI) -- 1.5.8 Polyacrylonitrile (PAN) -- 1.6 Amphoteric Ion-Exchange Membranes -- 1.7 Protonated Polybenzimidazole (PBI) Membrane -- 1.8 Summary -- References -- Chapter 2 Electrolytes Materials for Redox Flow Batteries -- 2.1 Introduction -- 2.2 Overview of Redox Flow Battery -- 2.3 Measurement of the Capacity of the Redox Flow Battery -- 2.4 Formation of Redox-Active Constituents for RFB -- 2.4.1 Inorganic Redox Flow Battery -- 2.4.1.1 All Vanadium RFBs -- 2.4.1.2 Zinc/Bromine RFBs -- 2.4.1.3 Tin/Bromine Redox Flow Battery -- 2.4.1.4 Iron-Chromium RFB -- 2.4.1.5 Polysulfide-Bromine RFB -- 2.4.1.6 Titanium-Manganese Redox Flow Battery -- 2.4.2 Organic Redox Flow Battery -- 2.4.2.1 Quinone-Based Redox Active Materials -- 2.4.2.2 Tempo-Based Redox-Active Materials -- 2.4.2.3 Redox Active Materials Based on Alkoxybenzene -- 2.5 Hybrid Electrolytes Used in a Lithium Redox Flow Battery -- 2.6 Levelised Cost of the Redox Active Materials -- 2.7 Conclusion -- References -- Chapter 3 Zinc Hybrid Redox Flow Batteries -- 3.1 Introduction -- 3.2 Zn Electrode and Dendrite Formation -- 3.3 The Electrolyte -- 3.4 Effect of Temperature -- 3.5 The Membrane -- 3.6 Hydrogen Evolution Reaction -- 3.7 Conclusion -- References -- Chapter 4 Zinc-Bromine Hybrid Redox Flow Batteries -- 4.1 Introduction -- 4.2 Electro-Chemical Energy Storage -- 4.3 Redox Flow Batteries -- 4.4 Zinc/Bromine Flow Batteries -- 4.5 Types of Zinc-Based Hybrid Flow Batteries -- 4.5.1 Zinc-Sulphur (Zn-S) Hybrid Battery -- 4.5.2 Zinc-Nickel (Zn/Ni) Batteries -- 4.5.3 Zinc-Sodium Hybrid Ion Batteries (ZSHIBs) -- 4.5.4 Zn-Ion Batteries (ZIBs) -- 4.6 Electrochemistry of Zinc/Bromine Deposition -- 4.6.1 Electrochemical Performance -- 4.6.2 Reduction of Dendrite Deposition -- 4.6.3 Bio-Mass Electrocatalyst -- 4.6.4 Surface Chemistry -- 4.6.5 Effect of Zinc Utilization. 327 $a4.7 Applications of Zinc-Bromine Hybrid Flow Batteries -- 4.8 Future Challenges -- 4.8.1 Electric Vehicles -- 4.8.2 Energy Management -- 4.8.3 Size and Cost -- 4.8.4 Safety Measures -- 4.9 Conclusion -- References -- Chapter 5 Zinc-Cerium Hybrid Redox Flow Batteries -- 5.1 Introduction -- 5.1.1 Redox Flow Batteries (RFBs) -- 5.1.2 The Basic Concept of Redox Flow Batteries -- 5.1.3 Progress and Challenges in the Redox Flow Batteries -- 5.1.4 Types of Redox Flow Batteries -- 5.1.4.1 Aqueous Redox Flow Batteries -- 5.1.4.2 Nonaqueous Redox Flow Batteries -- 5.1.4.3 Hybrid Redox Flow Batteries -- 5.2 Zinc-Cerium Hybrid Redox Flow Battery -- 5.2.1 Working Principle of Zn-Ce Redox Flow Cell -- 5.2.1.1 Components of Zn-Ce Redox Flow Battery -- 5.2.2 Factors Affecting the Performance of Zn-Ce Redox Flow Battery -- 5.2.2.1 Temperature -- 5.2.2.2 Electrolyte Flow Rate -- 5.2.2.3 Current Density -- 5.2.2.4 Charge Conditions and Cycle Life -- 5.3 Summary -- Acknowledgment -- References -- Chapter 6 Vanadium Redox Flow Batteries (VRFB) -- 6.1 Introduction and Overview -- 6.1.1 Working Principle of VRFB -- 6.1.2 Main Components of the VRFB System -- 6.1.2.1 Electrodes -- 6.1.2.2 Electrolytes -- 6.1.2.3 Membranes -- 6.1.2.4 Bipolar Plates -- 6.2 VRFB System as Compared to Other Energy Storage Systems -- 6.3 Recent Research on VRFB -- 6.3.1 Positive and Negative Electrodes -- 6.3.2 Electrolytes -- 6.4 Conclusion and Perspective -- References -- Chapter 7 Vanadium-Based Redox Flow Batteries -- 7.1 Introduction -- 7.2 Redox Flow Batteries (RFBs) -- 7.2.1 The General Structure of RFBs -- 7.2.2 Working of Redox Flow Batteries -- 7.3 Types of Redox Flow Batteries -- 7.3.1 Iron/Chromium -- 7.3.2 All-Vanadium -- 7.3.3 Vanadium/Bromine -- 7.3.4 Bromine/Polysulfide -- 7.4 Vanadium Redox Flow Battery (VRFB) -- 7.4.1 Working Principle of Vanadium Redox Flow Battery. 327 $a7.4.2 Role of Different Components in VRFBs -- 7.4.2.1 Role of Membrane -- 7.4.2.2 Role of Electrolyte -- 7.4.2.3 Role of Electrode -- 7.5 Applications of Vanadium Redox Flow Batteries (VRFBs) -- 7.6 Summary -- References -- Chapter 8 System for the Redox Flow Technology -- 8.1 Introduction -- 8.2 General Construction of Redox Flow Battery -- 8.3 Energy Capacity -- 8.4 Optimization -- 8.5 Classification of RFB Based on Active Electrolyte -- 8.5.1 Inorganic Redox Flow Battery -- 8.5.1.1 Vanadium Redox Flow Battery -- 8.5.1.2 The Iron Redox Flow Battery (IRFB) -- 8.5.1.3 Polysulphide-Bromine Redox Flow Battery (PBBs) -- 8.5.1.4 Zinc-Polyiodide Redox Flow Battery -- 8.6 Organic Redox Flow Battery -- 8.7 Membrane-Less RFB -- 8.8 Semi-Solid RFB -- 8.9 Conclusion -- References -- Chapter 9 An Overview of Large-Scale Energy Storage Systems -- 9.1 Introduction -- 9.2 Progression of Energy Storage Method -- 9.3 Categorization of Energy Storage System -- 9.3.1 Mechanical Energy Storage -- 9.3.2 Thermal Energy Storage -- 9.3.3 Electrostatic and Magnetic Energy Storage System -- 9.3.4 The Electrochemical Energy Storage System -- 9.3.5 The Chemical Energy Storage System -- 9.4 Implementations of Energy Storage Systems -- 9.5 Commercial Prototype of Energy Storage Systems -- 9.6 Environmental Repercussions of Energy Storage Systems -- 9.7 Energy Storage Guidelines -- 9.8 Blockades and Effective Solutions -- 9.9 Future Prospects -- 9.10 Conclusion -- References -- Index -- EULA. 330 $aThis comprehensive work explores the advanced technology of redox flow batteries, focusing on key components such as membranes, electrolytes, and various battery systems including zinc hybrid, vanadium, and zinc-bromine hybrids. Edited by Inamuddin and Tariq Altalhi, it provides an in-depth analysis of membrane properties, electrolyte materials, and the operational mechanics of these batteries. The book aims to advance knowledge on energy storage technologies, targeting researchers, engineers, and professionals in the field of sustainable energy solutions.$7Generated by AI. 606 $aEnergy storage$7Generated by AI 606 $aMembranes (Technology)$7Generated by AI 615 0$aEnergy storage 615 0$aMembranes (Technology) 676 $a621.312424 700 $aInamuddin$0847455 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020043603321 996 $aAdvanced Redox Flow Technology$94420208 997 $aUNINA