LEADER 03516cam0-22006851i-450- 001 990000049220403321 005 20100923150547.0 035 $a000004922 035 $aFED01000004922 035 $a(Aleph)000004922FED01 035 $a000004922 100 $a20020821g19259999km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aCensimento della popolazione del Regno d'Italia al 1. dicembre 1921$fMinistero dell'economia nazionale. Direzione generale della statistica. Ufficio del censimento 210 $aRoma$cProvveditorato generale dello Stato$d1925- 215 $av.$d26 cm 307 $a1.: XXIII, 160 p. ; 2.: XXI, 270 p.;3.: XXIV, 212 p.; 4.: XXVIII, 196 p.;5.: XXIII, 209 p.;6.: XXIV, 137 p.; 7.: XXXIII, 363 p.; 8.: XXXV, 457 p.; 9.: XXVII, 300; 10.: XLIV, 544; 11.: XXVIII, 232 p;12.: XXIII, 118 p.; 13.: XXXII, 535 p.; 14.: XXXI, 294 p.; 15.: XXVII, 225 p.; 16.: XXXVI, 401 p.; 17.: LI, 658 p.; 18.: XXXIX, 453 p.; 19.: XII, 282, 357 p.; 20.: 179 p. 327 0 $a1.: Umbria$a2.: Venezia Tridentina$a3.: Venezia Giulia$a4.: Sardegna$a5.: Liguria$a6.: Lazio$a7.: Toscana$a8.: Emilia$a9.: Puglie$a10.: Piemonte$a11.: Marche$a12.: Basilicata$a13.: Sicilia$a14.: Abruzzi e Molise$a15.: Calabria$a16.: Campania$a17.: Lombardia$a18.: Veneto$a19.: Relazione generale$a20.: Censimento della popolazione delle colonie italiane al 1. dic. 1921 e rilevazione degli abitanti del possedimento delle isole Egee al 20 agosto 1922 610 0 $aItalia$aPopolazione 610 0 $aPopolazione$aUmbria$aCensimento$a1921 610 0 $aUmbria$aPopolazione$aCensimento$a1921 610 0 $aVenezia tridentina$aPopolazione$aCensimento$a1921 610 0 $aPopolazione$aVenezia tridentina$aCensimento$a1921 676 $a312$v21$zita 676 $a351.81$v21$zita 710 01$aItalia.$bDirezione generale del lavoro e della previdenza sociale$0354178 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000049220403321 952 $aIstat Cens.P. 1921 (1)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (2)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (3)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (4)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (5)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (6)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (7)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (8)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (9)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (10)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (11)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (12)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (13)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (14)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (15)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (16)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (17)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (18)$bIst. 2104bis$fILFGE 952 $aIstat Cens.P. 1921 (19)$bIst. 2104$fILFGE 952 $aIstat Cens.P. 1921 (20)$bIst. 2104$fILFGE 952 $aXVI F 9(1)$b1468$fFGBC 952 $aXVI F 9(2)$b1468$fFGBC 952 $a13 K 33 28$b6336$fFINBC 952 $a13 K 33 29$b6508$fFINBC 959 $aFGBC 959 $aFINBC 959 $aILFGE 996 $aCensimento della popolazione del Regno d'Italia al 1. dicembre 1921$9112230 997 $aUNINA LEADER 05827nam 2200757 a 450 001 9911020015003321 005 20251116153540.0 010 $a9786611841010 010 $a9780470770801 010 $a0470770805 010 $a9781281841018 010 $a1281841013 010 $a9781615834778 010 $a161583477X 010 $a9780470770795 010 $a0470770791 035 $a(CKB)1000000000551097 035 $a(EBL)366798 035 $a(OCoLC)264714649 035 $a(SSID)ssj0000147488 035 $a(PQKBManifestationID)11910443 035 $a(PQKBTitleCode)TC0000147488 035 $a(PQKBWorkID)10011310 035 $a(PQKB)10160729 035 $a(MiAaPQ)EBC366798 035 $a(PPN)223474088 035 $a(Perlego)2759419 035 $a(EXLCZ)991000000000551097 100 $a20080414d2008 uy 0 101 0 $aeng 135 $aur|n||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEngineering design via surrogate modelling $ea practical guide /$fAlexander I.J. Forrester, Andras Sobester and Andy J. Keane 210 1$aChichester, West Sussex, United Kingdom :$cWiley,$d2008. 215 $a1 online resource (xviii, 210 pages) $cillustrations (some colour) 311 1 $a9780470060681 311 1 $a0470060689 320 $aIncludes bibliographical references and index. 327 $aEngineering Design via Surrogate Modelling; Contents; Preface; About the Authors; Foreword; Prologue; Part I Fundamentals; 1 Sampling Plans; 1.1 The 'Curse of Dimensionality' and How to Avoid It; 1.2 Physical versus Computational Experiments; 1.3 Designing Preliminary Experiments (Screening); 1.3.1 Estimating the Distribution of Elementary Effects; 1.4 Designing a Sampling Plan; 1.4.1 Stratification; 1.4.2 Latin Squares and Random Latin Hypercubes; 1.4.3 Space-filling Latin Hypercubes; 1.4.4 Space-filling Subsets; 1.5 A Note on Harmonic Responses; 1.6 Some Pointers for Further Reading 327 $aReferences2 Constructing a Surrogate; 2.1 The Modelling Process; 2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach; 2.1.2 Stage Two: Parameter Estimation and Training; 2.1.3 Stage Three: Model Testing; 2.2 Polynomial Models; 2.2.1 Example One: Aerofoil Drag; 2.2.2 Example Two: a Multimodal Testcase; 2.2.3 What About the k-variable Case?; 2.3 Radial Basis Function Models; 2.3.1 Fitting Noise-Free Data; 2.3.2 Radial Basis Function Models of Noisy Data; 2.4 Kriging; 2.4.1 Building the Kriging Model; 2.4.2 Kriging Prediction; 2.5 Support Vector Regression 327 $a2.5.1 The Support Vector Predictor2.5.2 The Kernel Trick; 2.5.3 Finding the Support Vectors; 2.5.4 Finding ; 2.5.5 Choosing C and ; 2.5.6 Computing : -SVR; 2.6 The Big(ger) Picture; References; 3 Exploring and Exploiting a Surrogate; 3.1 Searching the Surrogate; 3.2 Infill Criteria; 3.2.1 Prediction Based Exploitation; 3.2.2 Error Based Exploration; 3.2.3 Balanced Exploitation and Exploration; 3.2.4 Conditional Likelihood Approaches; 3.2.5 Other Methods; 3.3 Managing a Surrogate Based Optimization Process; 3.3.1 Which Surrogate for What Use? 327 $a3.3.2 How Many Sample Plan and Infill Points?3.3.3 Convergence Criteria; 3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking; References; Part II Advanced Concepts; 4 Visualization; 4.1 Matrices of Contour Plots; 4.2 Nested Dimensions; Reference; 5 Constraints; 5.1 Satisfaction of Constraints by Construction; 5.2 Penalty Functions; 5.3 Example Constrained Problem; 5.3.1 Using a Kriging Model of the Constraint Function; 5.3.2 Using a Kriging Model of the Objective Function; 5.4 Expected Improvement Based Approaches 327 $a5.4.1 Expected Improvement With Simple Penalty Function5.4.2 Constrained Expected Improvement; 5.5 Missing Data; 5.5.1 Imputing Data for Infeasible Designs; 5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement; 5.7 Summary; References; 6 Infill Criteria with Noisy Data; 6.1 Regressing Kriging; 6.2 Searching the Regression Model; 6.2.1 Re-Interpolation; 6.2.2 Re-Interpolation With Conditional Likelihood Approaches; 6.3 A Note on Matrix Ill-Conditioning; 6.4 Summary; References; 7 Exploiting Gradient Information; 7.1 Obtaining Gradients; 7.1.1 Finite Differencing 327 $a7.1.2 Complex Step Approximation 330 $aSurrogate models expedite the search for promising designs by standing in for expensive design evaluations or simulations. They provide a global model of some metric of a design (such as weight, aerodynamic drag, cost, etc.), which can then be optimized efficiently. Engineering Design via Surrogate Modelling is a self-contained guide to surrogate models and their use in engineering design. The fundamentals of building, selecting, validating, searching and refining a surrogate are presented in a manner accessible to novices in the field. Figures are used liberally to explain the key 606 $aEngineering design$xMathematical models 606 $aEngineering design$xStatistical methods 606 $aEnginyeria$xDisseny$xModels matemàtics$2lemac 606 $aEnginyeria$xDisseny$xMètodes estadístics$2lemac 615 0$aEngineering design$xMathematical models. 615 0$aEngineering design$xStatistical methods. 615 7$aEnginyeria$xDisseny$xModels matemàtics. 615 7$aEnginyeria$xDisseny$xMètodes estadístics. 676 $a620/.0042015118 700 $aForrester$b Alexander I. J.$01675328 702 $aSo?bester$b Andra?s 702 $aKeane$b A. J. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020015003321 996 $aEngineering design via surrogate modelling$94040700 997 $aUNINA