LEADER 01183nam0-2200349---450- 001 990008822220403321 005 20090311105950.0 010 $a978.0.8071.3200.5 035 $a000882222 035 $aFED01000882222 035 $a(Aleph)000882222FED01 035 $a000882222 100 $a20090311d2006----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $aa-------001yy 200 1 $a<>unnatural metropolis$ewresting New Orleans from nature$fCraig E. Colten 205 $a1.st printing paperback$fwith a new preface by the author 210 $aBaton Rouge$cLouisiana State University Press$dc2006 215 $aXX, 245 p.$cill.$d24 cm 225 1 $aEnvironmental history / Geography 610 0 $aEcologia urbana$aLouisiana$aArea metropolitana$aNew Orleans 610 0 $aIngegneria fluviale$aLouisiana$aArea metropolitana$aNew Orleans 610 0 $aArea metropolitana$aNew Orleans$aCondizioni sociali 700 1$aColten,$bCraig E.$0505043 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008822220403321 952 $aA2 SOP I 31$b04374$fDINST 959 $aDINST 996 $aUnnatural metropolis$9806874 997 $aUNINA LEADER 03211nam 2200781 a 450 001 9911019954903321 005 20241009123805.0 010 $a9786613332356 010 $a9781283332354 010 $a1283332353 010 $a9781118150382 010 $a1118150384 010 $a9781118150375 010 $a1118150376 035 $a(CKB)2550000000062080 035 $a(EBL)818793 035 $a(SSID)ssj0000566797 035 $a(PQKBManifestationID)12204377 035 $a(PQKBTitleCode)TC0000566797 035 $a(PQKBWorkID)10549872 035 $a(PQKB)10301812 035 $a(SSID)ssj0000555106 035 $a(PQKBManifestationID)11366525 035 $a(PQKBTitleCode)TC0000555106 035 $a(PQKBWorkID)10519653 035 $a(PQKB)10754941 035 $a(MiAaPQ)EBC818793 035 $a(OCoLC)761319821 035 $a(Perlego)2771356 035 $a(EXLCZ)992550000000062080 100 $a20050112d2004 fy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMeasurement errors in surveys /$fedited by Paul P. Biemer ... [et al.] 210 $aHoboken, N.J. $cWiley-Interscience$dc2004 215 $a1 online resource (804 p.) 225 1 $aWiley series in probability and statistics 300 $aDescription based upon print version of record. 311 08$a9780471692805 311 08$a0471692808 311 08$a9780471534051 311 08$a0471534056 320 $aIncludes bibliographical references (p. [687]-733) and index. 327 $asection A. The questionnaire -- section B. Respondents and responses -- section C. Interviewers and other means of data collection -- section D. Measurement errors in the interview process -- section E. Modeling measurement errors and their effects on estimation and data analysis. 330 $aWILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ""This book will be an aid to survey statisticians and to research workers who must work with survey data.""-Short Book Reviews, International Statistical Institute Measurement Errors i 410 0$aWiley series in probability and statistics. 606 $aError analysis (Mathematics) 606 $aSurveys 606 $aAnàlisi d'error (Matemàtica)$2thub 606 $aEnquestes$2thub 608 $aLlibres electrònics$2thub 615 0$aError analysis (Mathematics) 615 0$aSurveys. 615 7$aAnàlisi d'error (Matemàtica) 615 7$aEnquestes 676 $a511/.43 701 $aBiemer$b Paul P$0175373 712 12$aInternational Conference on Measurement Errors in Surveys$f(1990 :$eTucson, Ariz.) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019954903321 996 $aMeasurement errors in surveys$94421863 997 $aUNINA LEADER 04490nam 22005655 450 001 9911015860903321 005 20250702130316.0 010 $a9783031942761$b(electronic bk.) 010 $z9783031942754 024 7 $a10.1007/978-3-031-94276-1 035 $a(MiAaPQ)EBC32195979 035 $a(Au-PeEL)EBL32195979 035 $a(CKB)39578212500041 035 $a(DE-He213)978-3-031-94276-1 035 $a(EXLCZ)9939578212500041 100 $a20250702d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aArtificial Intelligence for Integrated Smart Energy Systems in Electric Vehicles /$fedited by Surender Reddy Salkuti 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (852 pages) 225 1 $aLecture Notes in Electrical Engineering,$x1876-1119 ;$v1427 311 08$aPrint version: Salkuti, Surender Reddy Artificial Intelligence for Integrated Smart Energy Systems in Electric Vehicles Cham : Springer,c2025 9783031942754 327 $a -- Artificial Intelligence in Electric Vehicles for Sustainable Driving -- Modernization of Electric Grids for Charging of Electric Vehicles -- Mitigating Impacts of Electric Vehicle Charging Stations to the Distribution Systems by Optimal Operation of Soft Open Point -- Performance Evaluation of Artificial Neural Networks for Electric Vehicle State of Charge Estimation across Different Driving Cycles -- GJO-Pattern Search Algorithm based DG and Capacitor Placement in Distribution Network with Zone based Installation of EVCSs, etc. 330 $aThis book provides a comprehensive exploration of cutting-edge research in electric vehicles (EVs) integrated smart energy systems with a main focus on the application of artificial intelligence (AI). This book offers a wide and comprehensive practical approach with the applications of AI to address the challenges and opportunities of modern hybrid energy systems for developing advanced hybrid intelligent methodologies for forecasting and scheduling variable power output from renewable energy sources (RESs) and EVs. This will enhance system flexibility and facilitate the integration of RESs and EVs efficiently, which is a step towards a sustainable future. The chapters cover diverse topics offering valuable knowledge and methodologies including an introduction to Artificial Intelligence (AI), Machine Learning (ML), Internet of Things (IoT), Cybersecurity, and their applications in modern power and energy systems, intelligent control of power electronics for RESs and EVs, intelligent charging management of EVs, etc. This book aims to provide insights into various suitable solutions to increase the security, reliability, and interoperability of the grid under high penetration of renewable energy, storage systems, and electric transport in the context of the modern smart grid. The multi-objective optimization problems such as economic and emission dispatch problems; flexibility and reliability problems; and economic and reliability problems are solved to determine the trade-off solutions using efficient evolutionary algorithms. The chapters cover diverse topics offering valuable knowledge and methodologies including an introduction to Artificial Intelligence (AI), Machine Learning (ML), IoT, Cybersecurity, and their applications in modern power and energy systems, intelligent control of power electronics for RESs and EVs, intelligent charging management of EVs, etc. 410 0$aLecture Notes in Electrical Engineering,$x1876-1119 ;$v1427 606 $aElectrical engineering 606 $aAutomatic control 606 $aElectric power production 606 $aElectrical and Electronic Engineering 606 $aControl and Systems Theory 606 $aElectrical Power Engineering 615 0$aElectrical engineering. 615 0$aAutomatic control. 615 0$aElectric power production. 615 14$aElectrical and Electronic Engineering. 615 24$aControl and Systems Theory. 615 24$aElectrical Power Engineering. 676 $a621.3 700 $aSalkuti$b Surender Reddy$01294634 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9911015860903321 996 $aArtificial Intelligence for Integrated Smart Energy Systems in Electric Vehicles$94409203 997 $aUNINA