LEADER 00941cam0 2200265 450 001 E600200036787 005 20210204083758.0 100 $a20080502d1985 |||||ita|0103 ba 101 $aeng 102 $aDE 200 1 $aMax Weber and Asia$econtribution to the sociology of development$fAndreas E. Buss 210 $aMünchen$aKöln$aLondon$cWeltforum Verlag$d1985 215 $a116 p.$d21 cm 225 2 $aMaterialien zu Entwicklung und Politik$v27 410 1$1001LAEC00024971$12001 $a*Materialien zu Entwicklung und Politik$v27 700 1$aBuss$b, Andreas E.$3A600200048066$4070$0125143 801 0$aIT$bUNISOB$c20210204$gRICA 850 $aUNISOB 852 $aUNISOB$j300$m59623 912 $aE600200036787 940 $aM 102 Monografia moderna SBN 941 $aM 957 $a300$b002207$gSi$d59623$1massimo$2UNISOB$3UNISOB$420080502095921.0$520190716120940.0$6Spinosa 996 $aMax Weber and Asia$91683450 997 $aUNISOB LEADER 00960nam a22002291i 4500 001 991002755629707536 005 20030804134924.0 008 030925s1903 it |||||||||||||||||ita 035 $ab12334327-39ule_inst 035 $aARCHE-038186$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a851.1 100 1 $aChistoni, Paride$0454026 245 13$aLa seconda fase del pensiero dantesco :$bperiodo degli studi classici e filosofici antichi e sugli espositori medievali /$cParide Chistoni 260 $aLivorno :$bGiusti,$c1903 300 $aXVI, 222 p. ;$c19 cm 907 $a.b12334327$b02-04-14$c08-10-03 912 $a991002755629707536 945 $aLE002 It. XII D 7 (Fondo Ferretti)$g1$i2002000172358$lle002$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i12735656$z08-10-03 996 $aSeconda fase del pensiero dantesco$9160048 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$fita$git $h3$i1 LEADER 05510nam 2200709Ia 450 001 9911019952403321 005 20200520144314.0 010 $a9786612687655 010 $a9781282687653 010 $a1282687654 010 $a9783527628025 010 $a3527628029 010 $a9783527628032 010 $a3527628037 035 $a(CKB)1000000000790070 035 $a(EBL)481783 035 $a(OCoLC)441894470 035 $a(SSID)ssj0000340199 035 $a(PQKBManifestationID)11233222 035 $a(PQKBTitleCode)TC0000340199 035 $a(PQKBWorkID)10387433 035 $a(PQKB)11086334 035 $a(MiAaPQ)EBC481783 035 $a(Perlego)2763831 035 $a(EXLCZ)991000000000790070 100 $a20081029d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMathematical analysis of evolution, information, and complexity /$fedited by Wolfgang Arendt and Wolfgang P. Schleich 210 $aWeinheim $cWiley-VCH$dc2009 215 $a1 online resource (504 p.) 300 $aDescription based upon print version of record. 311 08$a9783527408306 311 08$a3527408304 320 $aIncludes bibliographical references and index. 327 $aMathematical Analysis of Evolution, Information, and Complexity; Contents; Preface; List of Contributors; Prologue; 1 Weyl's Law; 1.1 Introduction; 1.2 A Brief History of Weyl's Law; 1.2.1 Weyl's Seminal Work in 1911-1915; 1.2.2 The Conjecture of Sommerfeld (1910); 1.2.3 The Conjecture of Lorentz (1910); 1.2.4 Black Body Radiation: From Kirchhoff to Wien's Law; 1.2.5 Black Body Radiation: Rayleigh's Law; 1.2.6 Black Body Radiation: Planck's Law and the Classical Limit; 1.2.7 Black Body Radiation: The Rayleigh-Einstein-Jeans Law; 1.2.8 From Acoustics to Weyl's Law and Kac's Question 327 $a1.3 Weyl's Law with Remainder Term. I1.3.1 The Laplacian on the Flat Torus T(2); 1.3.2 The Classical Circle Problem of Gauss; 1.3.3 The Formula of Hardy-Landau-Voronoi?; 1.3.4 The Trace Formula on the Torus T(2) and the Leading Weyl Term; 1.3.5 Spectral Geometry: Interpretation of the Trace Formula on the Torus T(2) in Terms of Periodic Orbits; 1.3.6 The Trace of the Heat Kernel on d-Dimensional Tori and Weyl's Law; 1.3.7 Going Beyond Weyl's Law: One can Hear the Periodic Orbits of the Geodesic Flow on the Torus T(2); 1.3.8 The Spectral Zeta Function on the Torus T(2) 327 $a1.3.9 An Explicit Formula for the Remainder Term in Weyl's Law on the Torus T(2) and for the Circle Problem1.3.10 The Value Distribution of the Remainder Term in the Circle Problem; 1.3.11 A Conjecture on the Value Distribution of the Remainder Term in Weyl's Law for Integrable and Chaotic Systems; 1.4 Weyl's Law with Remainder Term. II; 1.4.1 The Laplace-Beltrami Operator on d-Dimensional Compact Riemann Manifolds M(d) and the Pre-Trace Formula; 1.4.2 The Sum Rule for the Automorphic Eigenfunctions on M(d); 1.4.3 Weyl's Law on M(d) and its Generalization by Carleman 327 $a1.4.4 The Selberg Trace Formula and Weyl's Law1.4.5 The Trace of the Heat Kernel on M(2); 1.4.6 The Trace of the Resolvent on M(2) and Selberg's Zeta Function; 1.4.7 The Functional Equation for Selberg's Zeta Function Z(s); 1.4.8 An Explicit Formula for the Remainder Term in Weyl's Law on M(2) and the Hilbert-Polya Conjecture on the Riemann Zeros; 1.4.9 The Prime Number Theorem vs. the Prime Geodesic Theorem on M(2); 1.5 Generalizations of Weyl's Law; 1.5.1 Weyl's Law for Robin Boundary Conditions; 1.5.2 Weyl's Law for Unbounded Quantum Billiards; 1.6 A Proof of Weyl's Formula 327 $a1.7 Can One Hear the Shape of a Drum?1.8 Does Diffusion Determine the Domain?; References; 2 Solutions of Systems of Linear Ordinary Differential Equations; 2.1 Introduction; 2.2 The Exponential Ansatz of Magnus; 2.3 The Feynman-Dyson Series, and More General Perturbation Techniques; 2.4 Power Series Methods; 2.4.1 Regular Points; 2.4.2 Singularities of the First Kind; 2.4.3 Singularities of Second Kind; 2.5 Multi-Summability of Formal Power Series; 2.5.1 Asymptotic Power Series Expansions; 2.5.2 Gevrey Asymptotics; 2.5.3 Asymptotic Existence Theorems; 2.5.4 k-Summability 327 $a2.5.5 Multi-Summability 330 $aMathematical Analysis of Evolution, Information, and Complexity deals with the analysis of evolution, information and complexity. The time evolution of systems or processes is a central question in science, this text covers a broad range of problems including diffusion processes, neuronal networks, quantum theory and cosmology. Bringing together a wide collection of research in mathematics, information theory, physics and other scientific and technical areas, this new title offers elementary and thus easily accessible introductions to the various fields of research addressed in the book. 606 $aMathematical physics 606 $aMathematical analysis 606 $aBoundary value problems$xWeyl theory 615 0$aMathematical physics. 615 0$aMathematical analysis. 615 0$aBoundary value problems$xWeyl theory. 676 $a515 676 $a530.15 701 $aArendt$b Wolfgang$f1950-$054059 701 $aSchleich$b Wolfgang$065818 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019952403321 996 $aMathematical analysis of evolution, information, and complexity$94421853 997 $aUNINA LEADER 01943nas 2200601-a 450 001 9910901842903321 005 20250922103840.0 011 $a1958-5764 035 $a(CKB)960238645284 035 $a(CONSER)---91641108- 035 $a(EXLCZ)99960238645284 100 $a19810401a19819999 --- b 101 0 $afre 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFuturibles 210 $a[Paris] $c[Association internationale futuribles]$d[1981]- 215 $a1 online resource 300 $aRefereed/Peer-reviewed 311 08$aPrint version: Futuribles (Paris, France : 1981) (DLC) 91641108 (OCoLC)7294682 0337-307X 531 $aFUTURIBLES ANALYSE ET PROSPECTIVE 531 $aFUTURIBLES 531 $aFUTURIBLES 2000 [I.E. DEUX MILLE] 531 0 $aFuturibles 606 $aSocial sciences$vPeriodicals 606 $aTwentieth century$vForecasts$vPeriodicals 606 $aSciences sociales$vPériodiques 606 $aVingtième siècle$vPrévisions$vPériodiques 606 $aSocial sciences$2fast$3(OCoLC)fst01122877 606 $aTwentieth century$2fast$3(OCoLC)fst01159810 606 $aCiències socials$2thub 606 $aPrevisió econòmica$2thub 608 $aForecasts.$2fast 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 608 $aPublications en série.$2rvmgf 608 $aPériodiques.$2rvmgf 608 $aRevistes electròniques.$2thub 615 0$aSocial sciences 615 0$aTwentieth century 615 6$aSciences sociales 615 6$aVingtième siècle 615 7$aSocial sciences. 615 7$aTwentieth century. 615 7$aCiències socials 615 7$aPrevisió econòmica 712 02$aInternational Association Futuribles. 906 $aJOURNAL 912 $a9910901842903321 920 $aexl_impl conversion 996 $aFuturibles$9795673 997 $aUNINA