LEADER 02669nam 2200685 a 450 001 9910450751503321 005 20200520144314.0 010 $a1-282-85896-3 010 $a9786612858963 010 $a0-7735-6879-4 035 $a(CKB)1000000000245001 035 $a(SSID)ssj0000283509 035 $a(PQKBManifestationID)11242297 035 $a(PQKBTitleCode)TC0000283509 035 $a(PQKBWorkID)10250647 035 $a(PQKB)11130145 035 $a(MiAaPQ)EBC3330565 035 $a(CaPaEBR)400156 035 $a(CaBNvSL)gtp00521435 035 $a(MiAaPQ)EBC3243528 035 $a(Au-PeEL)EBL3330565 035 $a(CaPaEBR)ebr10132746 035 $a(CaONFJC)MIL285896 035 $a(OCoLC)929120777 035 $a(EXLCZ)991000000000245001 100 $a20020820d2001 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRed stars$b[electronic resource] $epersonality and the Soviet popular song, 1955-1991 /$fDavid MacFadyen 210 $aMontreal $cMcGill-Queen's University Press$dc2001 215 $axi, 319 p. $cports 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-7735-2106-2 320 $aIncludes bibliographical references (p. [273]-307), filmography (p. 307-309), discography (p. 310-315) and index. 327 $aThe Soviet popular song after Stalin -- Lyric or civic: personality and theatricality -- Why sing estrada? Philosophical contexts of the genre -- Edita Pekha: gentle voice of the thaw -- Iosif Kobzon and the civic response -- Irina Ponarovskaia and Sofiia Rotaru : in and out of Russia -- Lev Leshchenko and Valerii Leont'ev: two nightingales -- Alla Pugacheva: redefinine estrada -- Alla Pugacheva: redefining personality. 606 $aPopular music$zSoviet Union$xHistory and criticism 606 $aPopular music$xSocial aspects$zSoviet Union 606 $aSingers$zSoviet Union$vBiography 606 $aMusique populaire$zURSS$xHistoire et critique 606 $aMusique populaire$xAspect social$zURSS 606 $aChanteurs$zURSS$vBiographies 608 $aElectronic books. 615 0$aPopular music$xHistory and criticism. 615 0$aPopular music$xSocial aspects 615 0$aSingers 615 6$aMusique populaire$xHistoire et critique. 615 6$aMusique populaire$xAspect social 615 6$aChanteurs 676 $a782.42164/0947/0904 700 $aMacFadyen$b David$f1964-$01033309 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450751503321 996 $aRed stars$92459391 997 $aUNINA LEADER 04937nam 22004093 450 001 9910842290903321 005 20240308080228.0 010 $a981-9991-87-0 035 $a(MiAaPQ)EBC31200888 035 $a(Au-PeEL)EBL31200888 035 $a(EXLCZ)9930776791300041 100 $a20240308d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMass Transfer Dynamics of Contaminants in Fractured Media 205 $a1st ed. 210 1$aSingapore :$cSpringer,$d2024. 210 4$d©2024. 215 $a1 online resource (210 pages) 311 $a981-9991-86-2 327 $aIntro -- Preface -- Contents -- About the Authors -- Frequently Used Symbols -- 1 Introduction -- 1.1 Mass Transfer in Saturated System -- 1.2 Mass Transfer in Unsaturated System -- References -- 2 Concepts, Structure, and Properties of Fractured Media -- 2.1 Basic Concepts of Fractured Media -- 2.2 Structure of Fractured Media -- 2.3 Properties of Fractured Media -- 2.3.1 Porosity of Rock Mass -- 2.3.2 Permeability of Rock Mass -- 2.3.3 Permeability of Geologic Formations -- 2.4 Characterization and Reconstruction of Fractured Media -- 2.4.1 2D Self-affine Fracture Generation -- 2.4.2 3D Sheared Fractures with the Shear Displacement -- References -- 3 Basic Law of Fluid Flow in Fractured Media -- 3.1 Basic Concepts of Fluid Flow in Fractured Media -- 3.1.1 Viscous Versus Inviscid Regions of Flow -- 3.1.2 Laminar Versus Turbulent Flow -- 3.1.3 One, Two, and Three-Dimensional Flows -- 3.2 Linear Flow Law -- 3.2.1 Darcy's Law -- 3.2.2 Cubic Law -- 3.3 Non-linear Flow Law -- 3.3.1 Izbash Equation -- 3.3.2 Forchheimer Equation -- 3.4 Multiphase Flow -- 3.4.1 Basic Concept of Multiphase Flow -- 3.4.2 Immiscible Fluid Flow -- 3.4.3 Immiscible Three-Phase Flow -- References -- 4 Basic Process of Mass Transfer in Fractured Media -- 4.1 Diffusion -- 4.2 Brownian Motion and Fick's Law -- 4.2.1 Brownian Motion -- 4.2.2 Fick's First Law -- 4.2.3 Fick's Second Law -- 4.3 Advection -- 4.4 Difference in Dispersion and Diffusion -- 4.5 Taylor Dispersion -- 4.6 Adsorption and Desorption -- 4.7 Precipitation and Dissolution -- 5 Mathematical Model of Mass Transfer in Fractured Media -- 5.1 Analytical Solution of Advection-Dispersion Equation (ADE) Model -- 5.1.1 ADE Model and Analytical Solution in One-Dimensional Fractured Media -- 5.1.2 ADE Model and Analytical Solution in Two-Dimensional Fractured Media. 327 $a5.1.3 ADE Model and Analytical Solution in Three-Dimensional Fractured Media -- 5.2 Continuous Time Random Walk (CTRW) Model -- 5.3 Mobile-Immobile (MIM) Model -- 5.4 Spatial Moment -- 5.5 Scalar Dissipation Rate (SDR) and Dilution Index -- 5.5.1 Scalar Dissipation Rate (SDR) -- 5.5.2 Dilution Index -- References -- 6 Numerical Methods of Mass Transfer Process in Fractured Media -- 6.1 Lattice Boltzmann Method -- 6.2 Immiscible Two-Phase Transport Model: Phase Field Method -- 6.3 Pore-Scale Aqueous Solute Transport Model -- 6.4 Coupling Strategy -- 6.5 Behaviors of Aqueous Tracer Mass Transfer -- References -- 7 Mass Transfer Between Matrix and Filled Fracture During Imbibition Process -- 7.1 LF-NMR Measurement and Principle -- 7.2 Experimental Materials -- 7.3 Distribution of the Imbibed Water -- 7.4 Imbibition Rate and Analytical Model -- References -- 8 Influence of Wettability on Interfacial Area for Immiscible Liquid Invasion -- 8.1 Interfacial Area for Immiscible Liquid Invasion -- 8.2 Entry Pressure -- 8.3 Two Phase Flow Characteristics -- 8.4 Capillary Pressure Saturation and Interfacial Area Relationships -- References -- 9 Multiscale Roughness Influence on Solute Transport in Fracture -- 9.1 Statistical Self-affine Property -- 9.2 Roughness Decomposition -- 9.3 Flow Field Characteristics in Fractures -- 9.4 Relationship Between Tracer Longitudinal Dispersion and Peclet Number -- References -- 10 Influence of Eddies on Solute Transport Through a Fracture -- 10.1 Flow Field and Eddies Formation -- 10.2 Spatial Evolution of Solute and BTC Characteristics -- 10.3 Inverse Model for Non-Fickian BTCs -- 10.4 Uniformity of Concentration Distribution -- References -- 11 Lattice Boltzmann Simulation of Solute Transport in Fractures -- 11.1 Coupling Flow and Concentration Fields Based on LBM -- 11.2 Taylor Dispersion Simulation Based on LBM. 327 $a11.3 Characteristics of Solute Transport in a Single Rough Fracture -- References. 700 $aDou$b Zhi$01732599 701 $aZhou$b Zhifang$01732600 701 $aWang$b Jinguo$01732601 701 $aHuang$b Yong$0894790 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910842290903321 996 $aMass Transfer Dynamics of Contaminants in Fractured Media$94146956 997 $aUNINA LEADER 05634nam 2200781 a 450 001 9911019918903321 005 20200520144314.0 010 $a9786610520862 010 $a9781280520860 010 $a1280520868 010 $a9783527606009 010 $a3527606009 010 $a9783527606085 010 $a3527606084 035 $a(CKB)1000000000377381 035 $a(EBL)481705 035 $a(OCoLC)69157728 035 $a(SSID)ssj0000231314 035 $a(PQKBManifestationID)11175158 035 $a(PQKBTitleCode)TC0000231314 035 $a(PQKBWorkID)10198467 035 $a(PQKB)10340976 035 $a(SSID)ssj0000307489 035 $a(PQKBManifestationID)11263805 035 $a(PQKBTitleCode)TC0000307489 035 $a(PQKBWorkID)10244520 035 $a(PQKB)10917387 035 $a(MiAaPQ)EBC481705 035 $a(PPN)226207374 035 $a(Perlego)2773883 035 $a(EXLCZ)991000000000377381 100 $a20060807d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum information processing /$fedited by Thomas Beth, Gerd Leuchs 205 $a2nd rev. and enlarged ed. 210 $aWeinheim $cWiley-VCH$dc2005 215 $a1 online resource (473 p.) 300 $aDescription based upon print version of record. 311 08$a9783527405411 311 08$a3527405410 320 $aIncludes bibliographical references and index. 327 $aQuantum Information Processing 2., revised and enlarged Edition; Contents; Preface to the First Edition; Preface to the Second Edition; List of Contributors; 1 Algorithms for Quantum Systems - Quantum Algorithms; 1.1 Introduction; 1.2 Fast Quantum Signal Transforms; 1.3 Quantum Error-correcting Codes; 1.4 Efficient Decomposition of Quantum Operations into Given One-parameter Groups; 1.5 Simulation of Hamiltonians; References; 2 Quantum Information Processing and Error Correction with Jump Codes; 2.1 Introduction; 2.2 Invertible Quantum Operations and Error Correction 327 $a2.3 Quantum Error Correction by Jump Codes2.3.1 Spontaneous Decay and Quantum Trajectories; 2.3.2 Jump Codes; 2.4 Universal Quantum Gates in Code Spaces; 2.4.1 Universal Sets of Quantum Gates for Qudit-Systems; 2.4.2 Universal One-Qutrit Gates; 2.4.3 A Universal Entanglement Gate; 2.5 Summary and Outlook; References; 3 Computational Model for the One-Way Quantum Computer: Concepts and Summary; 3.1 Introduction; 3.2 The QC(C) as a Universal Simulator of Quantum Logic Networks; 3.3 Non-Network Character of the QC(C); 3.4 Computational Model; 3.5 Conclusion; References 327 $a4 Quantum Correlations as Basic Resource for Quantum Key Distribution4.1 Introduction; 4.2 Background of Classical Information Theoretic Security; 4.3 Link Between Classical and Quantum; 4.4 Searching for Effective Entanglement; 4.5 Verification Sets; 4.5.1 6-state Protocol; 4.5.2 4-state Protocol; 4.5.3 2-state Protocol; 4.6 Examples for Evaluation; 4.7 Realistic Experiments; 4.8 Conclusions; References; 5 Increasing the Size of NMR Quantum Computers; 5.1 Introduction; 5.2 Suitable Molecules; 5.3 Scaling Problem for Experiments Based on Pseudo-pure States; 5.4 Approaching Pure States 327 $a5.5 Scalable NMR Quantum Computing Based on the Thermal Density Operator5.6 Time-optimal Implementation of Quantum Gates; 5.7 Conclusion; References; 6 On Lossless Quantum Data Compression and Quantum Variable-length Codes; 6.1 Introduction; 6.2 Codes, Lengths, Kraft Inequality and von Neumann Entropy Bound; 6.2.1 The Codes; 6.2.2 Length Observable and Average Length of Codewords; 6.2.3 Kraft Inequality and von Neumann Entropy Bound; 6.2.4 Base Length; 6.3 Construct Long Codes from Variable-length Codes; 6.4 Lossless Quantum Data Compression, if the Decoder is Informed about the Base Lengths 327 $a6.5 Code Analysis Based on the Base Length6.6 Lossless Quantum Data Compression with a Classical Helper; 6.7 Lossless Quantum Data Compression for Mixed State Sources; 6.8 A Result on Tradeoff between Quantum and Classical Resources in Lossy Quantum Data Compression; References; 7 Entanglement Properties of Composite Quantum Systems; 7.1 Introduction; 7.2 Separability of Composite Quantum Systems; 7.2.1 The Separability Problem; 7.2.2 Results on The Separability Problem; 7.3 The Distillability Problem; 7.3.1 Results on the Distillability Problem 327 $a7.4 Witness Operators for the Detection of Entanglement 330 $aQuantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) started a focused research program on quantum information in 1999. The contributions - written by leading experts 606 $aQuantum computers 606 $aQuantum theory 606 $aInformation theory 615 0$aQuantum computers. 615 0$aQuantum theory. 615 0$aInformation theory. 676 $a004.1 701 $aBeth$b Thomas$f1949-$054469 701 $aLeuchs$b Gerd$01841667 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019918903321 996 $aQuantum information processing$94421485 997 $aUNINA