LEADER 04207nam 2200697Ia 450 001 9911019896003321 005 20200520144314.0 010 $a9786612690235 010 $a9781118623244 010 $a111862324X 010 $a9781282690233 010 $a128269023X 010 $a9780470611487 010 $a0470611480 010 $a9780470394120 010 $a0470394129 035 $a(CKB)2550000000005900 035 $a(EBL)477689 035 $a(OCoLC)520990458 035 $a(SSID)ssj0000343068 035 $a(PQKBManifestationID)11252520 035 $a(PQKBTitleCode)TC0000343068 035 $a(PQKBWorkID)10287389 035 $a(PQKB)10107920 035 $a(MiAaPQ)EBC477689 035 $a(Perlego)1010000 035 $a(EXLCZ)992550000000005900 100 $a20090423d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSolid-state physics for electronics /$fAndre Moliton 210 $aLondon $cISTE ;$aHoboken, NJ $cWiley$d2009 215 $a1 online resource (407 p.) 225 1 $aISTE ;$vv.64 300 $aDescription based upon print version of record. 311 08$a9781848210622 311 08$a1848210620 320 $aIncludes bibliographical references and index. 327 $aSolid-State Physics for Electronics; Table of Contents; Foreword; Introduction; Chapter 1. Introduction: Representations of Electron-Lattice Bonds; 1.1. Introduction; 1.2. Quantum mechanics: some basics; 1.2.1. The wave equation in solids: from Maxwell's to Schro?dinger's equation via the de Broglie hypothesis; 1.2.2. Form of progressive and stationary wave functions for an electron with known energy (E); 1.2.3. Important properties of linear operators; 1.3. Bonds in solids: a free electron as the zero order approximation for a weak bond; and strong bonds 327 $a1.3.1. The free electron: approximation to the zero order1.3.2. Weak bonds; 1.3.3. Strong bonds; 1.3.4. Choosing between approximations for weak and strong bonds; 1.4. Complementary material: basic evidence for the appearance of bands in solids; 1.4.1. Basic solutions for narrow potential wells; 1.4.2. Solutions for two neighboring narrow potential wells; Chapter 2. The Free Electron and State Density Functions; 2.1. Overview of the free electron; 2.1.1. The model; 2.1.2. Parameters to be determined: state density functions in k or energy spaces 327 $a2.6.2. Expression for the state density functions in k space2.6.3. Expression for the state density functions in energy space; 2.7. Problems; 2.7.1. Problem 1: the function Z(E) in 1D; 2.7.2. Problem 2: diffusion length at the metal-vacuum interface; 2.7.3. Problem 3: 2D media: state density function and the behavior of the Fermi energy as a function of temperature for a metallic state; 2.7.4. Problem 4: Fermi energy of a 3D conductor; 2.7.5. Problem 5: establishing the state density function via reasoning in moment or k spaces 327 $a2.7.6. Problem 6: general equations for the state density functions expressed in reciprocal (k) space or in energy space 330 $aDescribing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered ma 410 0$aISTE 606 $aSolid state physics 606 $aElectronics$xMaterials 615 0$aSolid state physics. 615 0$aElectronics$xMaterials. 676 $a530.4/1 686 $a33.60$2bcl 700 $aMoliton$b Andre$0524132 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019896003321 996 $aSolid-state physics for electronics$94415985 997 $aUNINA