LEADER 03787nam 22005893 450 001 9910554231703321 005 20231110234554.0 010 $a9783110723526 010 $a3110723522 024 7 $a10.1515/9783110723526 035 $a(CKB)5590000000555642 035 $a(MiAaPQ)EBC6739303 035 $a(Au-PeEL)EBL6739303 035 $a(OCoLC)1281961689 035 $a(DE-B1597)571214 035 $a(DE-B1597)9783110723526 035 $a(OCoLC)1266227912 035 $a(Perlego)2976415 035 $a(EXLCZ)995590000000555642 100 $a20211214d2021 uy 0 101 0 $ager 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModellbasierte Entwicklung Mechatronischer Systeme $eMit Software- und Simulationsbeispielen Für Autonomes Fahren 205 $a1st ed. 210 1$aBerlin/München/Boston :$cWalter de Gruyter GmbH,$d2021. 210 4$d©2021. 215 $a1 online resource (292 pages) 225 1 $aDe Gruyter Studium 311 08$a9783110723465 311 08$a3110723468 327 $aIntro -- Vorwort -- Inhalt -- Abbildungsverzeichnis -- Tabellenverzeichnis -- 1 Einleitung -- 2 Modellbasierte Softwareentwicklung -- 3 Laborprojekt Mini-Auto-Drive -- 4 Grundlagen der Signale und Systeme -- 5 Fahrdynamiksimulation -- 6 Geschwindigkeitsregelung -- 7 Longitudinalpositionsregelung -- 8 Bahnkurvendefinition -- 9 Bahnfolgeregelung -- Literaturverzeichnis -- Register. 330 $aDer industrielle Einsatzbereich mechatronischer Systeme umfasst ein weites Spektrum vom Automotive-Bereich über den Maschinen- und Anlagenbau bis hin zur Consumertechnik und stellt somit eine Schlüsseltechnologie der Zukunft dar. Die Entwicklung komplexer softwareintensiver mechatronischer bzw. cyber-physischer Systeme wird aktuell und zukünftig durch die modellbasierte Entwicklung bestimmt und genau hier setzen die beiden Bände als Lehrbücher an. Der Schwerpunkt dieses Bands im Unterschied zum anderen Band liegt auf der modellbasierten Softwareentwicklung im Automotive-Bereich als Teildisziplin der modellbasierten Entwicklung und deren Anwendung in der Entwicklung von Steuerungs- und Regelungsfunktionen für autonomes Fahren. Als Anwendungsbeispiel behandelt dieser Band die modellbasierte Softwareentwicklung der Bewegungsregelung (engl. Motion Control) im buchbegleitenden Laborprojekt Mini-Auto-Drive. Die Leser lernen die Anwendung entweder der Modellierungs- und Simulationsumgebung MATLAB®/Simulink® oder alternativ der general-purpose Programmiersprache C++ und des Robot-Operating-Systems ROS in der Erstellung und Simulation von Funktions-, Umgebungs- und Softwaremodellen sowie in der Generierung bzw. der Implementierung und dem Test der Embedded-Software. 330 $aThis volume focuses on model-based software development in the automotive field as a sub-discipline of model-based development. It also examines how it is being applied in the development of control functions for autonomous driving. The environment used is either MATLAB®/Simulink® or, alternatively, the general-purpose programming language C++ and the Robot Operating System (ROS). 410 3$aDe Gruyter Studium 606 $aTechnology & Engineering / Automotive$2bisacsh 610 $aMechatronics. 610 $aautonomous driving. 610 $amachine engineering. 610 $amodel-based development. 615 7$aTechnology & Engineering / Automotive. 686 $aZQ 7050$qSEPA$2rvk 700 $aTränkle$b Frank$01219101 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910554231703321 996 $aModellbasierte Entwicklung Mechatronischer Systeme$92819059 997 $aUNINA LEADER 07835nam 22005653 450 001 9911019811803321 005 20250319205451.0 010 $z9781394255108$b(print) 010 $z1394255101$b(print) 010 $a9781394255115 010 $a139425511X 010 $a9781394255122 010 $a1394255128 010 $a9781394255139 010 $a1394255136 035 $a(CKB)36393897700041 035 $a(MiAaPQ)EBC31743369 035 $a(Au-PeEL)EBL31743369 035 $a(Exl-AI)31743369 035 $a(Perlego)4617459 035 $a(EXLCZ)9936393897700041 100 $a20241031h20252025 uy 0 101 0 $aeng 135 $aur|n#|||a|||a 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPrinciples of interferometric and polarimetric radiometry /$fIgnasi Corbella 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2025] 210 4$d©2025 215 $a1 online resource (xxv, 288 pages) $cillustrations 311 1 $a9781394255108 311 1 $a1394255101 320 $aIncludes bibliographical references and index. 327 $aForeword -- About the Author -- Preface -- Acknowledgments -- 1 Signals, Receivers, and Antennas -- 1.1 Random Variables, Real and Complex -- 1.1.1 Definitions -- 1.1.2 Operations -- 1.1.3 Normal Random Variables -- 1.1.4 The Arc Sine Law -- 1.2 Stochastic Processes -- 1.2.1 Stationarity -- 1.2.2 Correlation and Power -- 1.2.3 Jointly Normal Processes -- 1.2.4 Spectral Densities -- 1.2.5 Linear Systems -- 1.2.6 Time Averaging or Integration -- 1.3 Analytic Signals -- 1.3.1 Hilbert Transform and Quadrature Filter -- 1.3.2 Complex Envelope -- 1.3.3 Correlation and Spectra -- 1.4 Phasors of Random Signals -- 1.4.1 Concept -- 1.4.2 Power and Cross-correlation -- 1.4.3 Linear Systems -- 1.5 Microwave Networks -- 1.5.1 Voltage and Current -- 1.5.2 Normalized Voltage Waves -- 1.5.3 Available Power -- 1.5.4 S-parameters and Power Gains -- 1.5.5 Noise Waves and Temperature -- 1.5.6 Interconnection -- 1.5.7 Two-port Networks -- 1.5.8 Cascade -- 1.5.9 High Gain Receiver -- 1.5.10 The Bosma Theorem -- 1.6 Antennas -- 1.6.1 Radiated Electric Field and Power Density -- 1.6.2 Antenna Pattern and Directivity -- 1.6.3 Antenna Polarization -- 1.6.4 Thermal Noise Radiation -- 1.6.5 Received Signal -- 1.6.6 Phase Center -- 1.6.7 Polarization Misalignment -- 1.6.8 Transmission Link -- 1.6.9 Reciprocity -- 1.6.10 Other Definitions -- 1.6.11 Antenna Loss -- References -- 2 Microwave Radiometry -- 2.1 Thermal Emission -- 2.1.1 Emissivity and Brightness Temperature -- 2.1.2 Planck and Rayleigh-Jeans Laws -- 2.2 Polarization -- 2.2.1 Stokes Parameters and Polarimetric Brightness Temperature -- 2.2.2 Change of Polarization Frame -- 2.2.3 Linear Axis Rotation -- 2.2.4 Horizontal and Vertical Polarization -- 2.2.5 Circular Polarization -- 2.3 Antenna Temperature -- 2.3.1 Concept -- 2.3.2 Flat Target -- 2.3.3 Point Source -- 2.3.4 Extended Source -- 2.3.5 Angular Resolution -- 2.4 Total Power Radiometers -- 2.4.1 Received Signal -- 2.4.2 Power Measurement and Sensitivity -- 2.4.3 Square Law Device -- 2.4.4 Quadratic Detector -- References -- 3 Interferometry and Polarimetry -- 3.1 Historical Perspective -- 3.1.1 The Proposed Formulation -- 3.2 A Single Baseline -- 3.2.1 Visibility -- 3.2.2 Single Polarization -- 3.2.3 Polarimetric Radiometry: Ideal Case -- 3.2.4 Full Polarimetric Case -- 3.2.5 Receivers Interaction -- 3.2.6 The "?T r " Term -- 3.3 The Visibility Equation -- 3.3.1 Complex Correlation -- 3.3.2 The Fringe Washing Function -- 3.3.3 Director Cosines -- 3.3.4 Fourier Relation -- 3.4 Correlation Measurement -- 3.4.1 Sensitivity -- 3.4.2 Four Signal Multipliers -- 3.4.3 Two Signal Multipliers -- 3.4.4 Analog Multipliers -- 3.4.5 Signal Clipping and Normalized Correlation -- References -- 4 Aperture Synthesis -- 4.1 Synthetic Beam -- 4.1.1 Hexagonal Sampling -- 4.2 Radiometric Sensitivity -- 4.2.1 Variance of the Modified Brightness Temperature -- 4.2.2 Uncorrelated Visibility Samples -- 4.2.3 Correlation of Visibility Samples -- 4.3 Spatial Sampling -- 4.3.1 Visibility Coverage -- 4.3.2 Reciprocal Grids -- 4.3.3 Aliasing -- 4.3.4 Field of View -- 4.3.5 Hexagonal Grids: Y-shape Instrument -- 4.3.6 Hexagonal Instrument -- 4.4 Imaging -- 4.4.1 System of Equations -- 4.4.2 Conjugate Extension and Redundant Baselines Averaging -- 4.4.3 Fourier Image Reconstruction -- 4.4.4 G-matrix Image Reconstruction -- 4.4.5 Polarimetric Retrieval: Ideal Case -- 4.4.6 Full Polarimetric Case -- 4.4.7 Spatial Frequency Components -- 4.4.8 Reconstruction Error and Alias Mitigation -- References -- 5 Instrument Techniques -- 5.1 Frequency Conversion -- 5.1.1 Frequency Bands -- 5.1.2 Mixer Operation -- 5.1.3 Image Rejection Mixer -- 5.2 In-phase and Quadrature (IQ) Mixer -- 5.2.1 Concept -- 5.2.2 General Analysis -- 5.2.3 Quadrature Error -- 5.2.4 Correction of Phase Errors -- 5.2.5 Normalized Correlations -- 5.3 Quarter Period Delay -- 5.3.1 Concept -- 5.3.2 Center Frequency Error -- 5.3.3 Normalized Correlations -- 5.4 Digital Techniques -- 5.4.1 Sampling -- 5.4.2 Impact on Measurement Uncertainty -- 5.4.3 Low-frequency Spectrum -- 5.4.4 Spectrum with High-frequency Content -- 5.4.5 I/Q Alternate Sampling -- 5.4.6 Nyquist Zones -- 5.4.7 Correlation in the Frequency Domain -- References -- 6 Calibration and Characterization -- 6.1 Calibration Standards -- 6.1.1 Antenna and Calibration Planes -- 6.1.2 Plane Change in Total Power Radiometers -- 6.1.3 External Passive Targets -- 6.1.4 Probe Antenna -- 6.1.5 Internal Load -- 6.1.6 Noise Distribution -- 6.2 Parameter Retrieval -- 6.2.1 Correlator Gain -- 6.2.2 Inter-element Phase and Amplitude -- 6.2.3 Correlator Offset -- 6.2.4 Flat Target Response -- 6.2.5 Fringe Washing Function Shape -- 6.2.6 Receiver Gain and Offset -- 6.2.7 Instrumental Offset -- 6.3 Nonlinearity -- 6.3.1 Deflection Ratio -- 6.3.2 Impact on Instrumental Offset -- 6.4 Calibration Rate -- 6.4.1 Averaging and Interpolation -- 6.4.2 Temperature Correction -- References -- A Definitions and Concepts -- A. 1 Complex Vectors -- A. 2 Useful Complex Number Identities -- A. 3 Energy Conservation and Unitary Matrix -- A. 4 Spherical Coordinates and Solid Angle -- A.4. 1 Differential Surface -- A.4. 2 Solid Angle -- A. 5 Quadrature Equation Inversion -- A. 6 Special Functions -- A. 7 Fourier Transform -- A.7. 1 Convolution -- A.7. 2 Properties -- A.7. 3 Transform Pairs -- A.7. 4 Real Signals -- A.7. 5 Two-dimensional Fourier Transform -- A. 8 Discrete Fourier Transform -- A.8. 1 Correlation in Time and in Frequency -- A.8. 2 Random Signals -- A.8. 3 Two-dimensional Case. 330 $aThis book provides an in-depth exploration of microwave and polarimetric radiometry, focusing on principles, theories, and applications. It covers topics such as signals, receivers, antennas, calibration, and imaging techniques, with a particular emphasis on their use in remote sensing. The book is a comprehensive guide for engineers and researchers, detailing the contributions of Prof. Ignasi Corbella to the field, including his work on the SMOS mission for measuring soil moisture and ocean salinity. It aims to serve as a valuable reference for those working with radiometric instruments and advanced radiometry techniques.$7Generated by AI 606 $aRadiation$xMeasurement 606 $aRadiació$xMesurament$2lemac 606 $aInterferometria$2lemac 615 0$aRadiation$xMeasurement. 615 7$aRadiació$xMesurament 615 7$aInterferometria 700 $aCorbella$b Ignasi$01842409 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019811803321 996 $aPrinciples of interferometric and polarimetric radiometry$94422508 997 $aUNINA