LEADER 05478nam 2200721Ia 450 001 9911019779503321 005 20200520144314.0 010 $a9786612549281 010 $a9783527629800 010 $a3527629807 010 $a9781282549289 010 $a1282549286 010 $a9783527629817 010 $a3527629815 035 $a(CKB)2670000000009655 035 $a(EBL)487748 035 $a(OCoLC)609856718 035 $a(SSID)ssj0000397935 035 $a(PQKBManifestationID)11278450 035 $a(PQKBTitleCode)TC0000397935 035 $a(PQKBWorkID)10356938 035 $a(PQKB)10538961 035 $a(MiAaPQ)EBC487748 035 $a(Perlego)2761124 035 $a(EXLCZ)992670000000009655 100 $a20090724d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aHandbook of hydrogen storage $enew materials for future energy storage /$fedited by Michael Hirscher 210 $aWeinheim $cWiley-VCH Verlag GmbH & Co.$dc2010 215 $a1 online resource (375 p.) 300 $aDescription based upon print version of record. 311 08$a9783527322732 311 08$a3527322736 320 $aIncludes bibliographical references and index. 327 $aHandbook of Hydrogen Storage: New Materials for Future Energy Storage; Foreword; Contents; Preface; List of Contributors; 1 Storage of Hydrogen in the Pure Form; 1.1 Introduction; 1.2 Thermodynamic State and Properties; 1.2.1 Variables of State; 1.2.2 T-s-Diagram; 1.2.2.1 Joule-Thomson Coefficient; 1.2.3 Properties; 1.3 Gaseous Storage; 1.3.1 Compression and Expansion; 1.3.2 Tank Systems; 1.3.3 High Pressure Infrastructure; 1.4 Liquid Storage; 1.4.1 Liquefaction; 1.4.2 Thermodynamic Analysis; 1.4.2.1 Pressure Build-Up; 1.4.2.2 Boil-Off; 1.4.2.3 Cooling and Filling; 1.4.2.4 Back-Gas 327 $a1.4.3 Tank Systems1.4.4 Distribution Facilities; 1.5 Hybrid Storage; 1.5.1 Supercritical Storage; 1.5.2 Hydrogen Slush; 1.6 Comparison of Energy Densities; 1.7 Conclusion; References; 2 Physisorption in Porous Materials; 2.1 Introduction; 2.2 Carbon Materials; 2.3 Organic Polymers; 2.4 Zeolites; 2.5 Coordination Polymers; 2.6 Conclusions; References; 3 Clathrate Hydrates; 3.1 Introduction; 3.2 Clathrate Hydrate Structures; 3.3 Hydrogen Clathrate Hydrate; 3.4 Kinetic Aspects of Hydrogen Clathrate Hydrate; 3.5 Modeling of Hydrogen Clathrate Hydrates; 3.6 Future of Hydrogen Storage; References 327 $a4 Metal Hydrides4.1 Introduction; 4.2 Elemental Hydrides; 4.2.1 Ionic or Saline Hydrides; 4.2.2 Covalent Hydrides; 4.2.3 Metallic Hydrides; 4.3 Thermodynamics of Metal Hydrides; 4.3.1 Introduction; 4.3.2 Low Concentration; 4.3.3 High Concentration; 4.4 Intermetallic Compounds; 4.4.1 Thermodynamics; 4.4.1.1 Miedema's Model; 4.4.1.2 Semi-Empirical Band Structure Model; 4.4.2 Crystal Structure; 4.4.3 Electronic Structure; 4.5 Practical Considerations; 4.5.1 Synthesis; 4.5.2 Activation; 4.5.3 Hysteresis; 4.5.4 Plateau Slope; 4.5.5 Reversible Capacity; 4.5.6 Hydrogenation Kinetics 327 $a4.5.7 Cycle Life4.5.8 Decrepitation; 4.6 Metal Hydrides Systems; 4.6.1 AB5; 4.6.2 TiFe; 4.6.3 AB2 Laves Phases; 4.6.4 BCC Solid Solution; 4.7 Nanocrystalline Mg and Mg-Based Alloys; 4.7.1 Hydrogen Sorption Kinetics; 4.7.2 Reduction of the Heat of Formation; 4.7.3 Severe Plastic Deformation Techniques; 4.8 Conclusion; 4.8.1 Alloys Development; 4.8.2 Synthesis; 4.8.3 System Engineering; References; 5 Complex Hydrides; 5.1 Introduction; 5.2 Complex Borohydrides; 5.2.1 Introduction; 5.2.2 Stability of Metal Borohydrides; 5.2.3 Decomposition of Complex Borohydrides 327 $a5.2.4 Lithium Borohydride, LiBH45.2.4.1 Synthesis and Crystal Structure; 5.2.4.2 Decomposition of LiBH4; 5.2.5 Sodium Borohydride, NaBH4; 5.2.5.1 Synthesis and Crystal Structure; 5.2.5.2 Decomposition of NaBH4; 5.2.6 Potassium Borohydride KBH4; 5.2.7 Beryllium Borohydride Be(BH4)2; 5.2.8 Magnesium Borohydride Mg(BH4)2; 5.2.8.1 Synthesis and Crystal Structure; 5.2.8.2 Decomposition; 5.2.9 Calcium Borohydride Ca(BH4)2; 5.2.9.1 Synthesis and Crystal Structure; 5.2.9.2 Decomposition; 5.2.10 Aluminum Borohydride Al(BH4)3; 5.2.10.1 Synthesis and Crystal Structure; 5.2.10.2 Decomposition 327 $a5.2.11 Zinc Borohydride Zn(BH4)2 330 $aOwing to the limited resources of fossil fuels, hydrogen is proposed as an alternative and environment-friendly energy carrier. However, its potential is limited by storage problems, especially for mobile applications. Current technologies, as compressed gas or liquefied hydrogen, comprise severe disadvantages and the storage of hydrogen in lightweight solids could be the solution to this problem.Since the optimal storage mechanism and optimal material have yet to be identified, this first handbook on the topic provides an excellent overview of the most probable candidates, highlighting bo 606 $aHydrogen$xStorage$xMaterials 606 $aEnergy storage 615 0$aHydrogen$xStorage$xMaterials. 615 0$aEnergy storage. 676 $a665.81 676 $a665.81 22 686 $a540$2sdnb 686 $aERG 770b$2stub 686 $aVE 9850$2rvk 686 $aZP 4150$2rvk 701 $aHirscher$b Michael$01763936 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019779503321 996 $aHandbook of hydrogen storage$94422918 997 $aUNINA