LEADER 09044nam 22005413 450 001 9911019744103321 005 20231130221441.0 010 $a9781394167647 010 $a1394167644 010 $a9781394167630 010 $a1394167636 035 $a(CKB)28557018600041 035 $a(MiAaPQ)EBC30835942 035 $a(Au-PeEL)EBL30835942 035 $a(Exl-AI)30835942 035 $a(EXLCZ)9928557018600041 100 $a20231102d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Ultra Low-Power Semiconductor Devices $eDesign and Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$dİ2023. 215 $a1 online resource (313 pages) 311 08$a9781394166411 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Subthreshold Transistors: Concept and Technology -- 1.1 Introduction -- 1.2 Major Sources of Leakage and Possible Methods of Prevention -- 1.2.1 Leakage Mechanisms in MOS Transistors -- 1.2.1.1 Current I1 -- 1.2.1.2 Current I2 -- 1.2.1.3 Current I3 -- 1.2.1.4 Current I4 -- 1.2.1.5 Current I5 -- 1.2.1.6 Current I6 -- 1.2.2 Leakage Reduction Techniques -- 1.2.2.1 Leakage Reduction by Channel Processing -- 1.2.2.2 Leakage Reduction Through Different Circuit Techniques -- 1.2.2.3 Scaling of Supply Voltage -- 1.3 Possibilities and Challenges -- 1.4 Conclusions -- References -- Chapter 2 Introduction to Conventional MOSFET and Advanced Transistor TFET -- 2.1 Introduction -- 2.2 Device Structure -- 2.3 TFET Principle of Operation -- 2.3.1 OFF State -- 2.3.2 ON State -- 2.4 Material Characterization -- 2.4.1 Group IV Materials -- 2.4.2 Group III-V Materials -- 2.4.3 Heterostructures -- 2.4.4 2D Materials -- 2.5 Characteristics of TFET -- 2.5.1 Subthreshold Swing -- 2.5.2 ION/IOFF Ratio -- 2.5.3 Ambipolar Effect -- 2.6 Comparison of OFF-State Characteristics -- 2.7 Phonon Scattering's Impact -- 2.8 ON-State Performance Comparison -- 2.9 Performance Analysis Based on Intrinsic Delay -- 2.10 Bandgap's Effect on Device Performance -- 2.11 MOSFET and TFET Scaling Behaviour -- 2.12 Surface Potential of an N-TFET and N-MOSFET -- 2.13 Professional Advantages of TFET over MOSFET -- 2.14 Conclusion -- References -- Chapter 3 Operation Principle and Fabrication of TFET -- 3.1 Introduction -- 3.2 Planar MOSFET's Limitations -- 3.2.1 Effects of Short Channels -- 3.3 Demand for Low Power Operation -- 3.4 TFET: Operation Principle of TFET -- 3.5 TFET: Recent Design Issues in TFET -- 3.5.1 TFET: Subthreshold Swing Perspective -- 3.5.2 TFET: Power Consumption Perspective. 327 $a3.6 TFET: Modeling and Application -- 3.6.1 TFET: Modeling -- 3.6.2 TFET: Application -- 3.7 TFET: Fabrication Perspective -- 3.8 TFET: Applications and Future of Low-Power Electronics -- 3.9 Expected Challenges in Replacing MOSFET with TFET -- 3.10 Conclusion -- References -- Chapter 4 Mathematical Modeling of TFET and Its Future Applications: Ultra Low.Power SRAM Circuit and III-IV TFET -- 4.1 Introduction -- 4.2 Modeling Approaches -- 4.2.1 Atomistic Modeling -- 4.2.2 Analytical Modeling -- 4.3 Structure -- 4.3.1 Effect Transistor -- 4.3.2 Compact Models -- 4.4 Applications of Tunnel Field-Effect Transistor -- 4.4.1 TFET for Biosensor Applications -- 4.4.2 TFET-Based Memory Devices -- 4.4.3 TFETs for Mixed Signal Applications -- 4.4.4 TFETs for Analog/RF Applications -- 4.4.5 TFETs for Low-Power Applications -- 4.5 Road Ahead for Tunnel Field Effect Transistors -- References -- Chapter 5 Analysis of Channel Doping Variation on Transfer Characteristics to High Frequency Performance of F-TFET -- 5.1 Introduction -- 5.2 Simulated Device Structure and Parameters -- 5.3 DC Characteristics -- 5.4 Analysis of Analog/RF FOMs -- 5.5 Conclusion -- References -- Chapter 6 Comparative Study of Gate Engineered TFETs and Optimization of Ferroelectric Heterogate TFET Structure -- 6.1 Introduction -- 6.2 Study of Different TFET Structures -- 6.2.1 Simulation Configuration -- 6.2.2 Comparison of Electrical Parameters of Different Structures of TFET -- 6.3 Proposed Structure -- 6.4 Results and Discussion -- 6.4.1 2-D Model for Surface Potential -- 6.4.2 Study of Electrical Characteristics -- 6.4.2.1 Average Subthreshold Swing and ION/IOFF -- 6.4.2.2 DIBL -- 6.4.2.3 RDF Effect -- 6.4.2.4 Temperature Dependence -- 6.4.2.5 Study of Interface Traps -- 6.4.3 Memory Window -- 6.5 Conclusion -- 6.6 Future Scope -- References. 327 $aChapter 7 State of the Art Tunnel FETs for Low Power Memory Applications -- 7.1 Static Random Access Memory -- 7.1.1 Working of 6T-SRAM Cell -- 7.1.1.1 Read Operation -- 7.1.1.2 Write Operation -- 7.2 Performance Parameters of SRAM Cell -- 7.3 TFET-Based SRAM Cell Design -- 7.3.1 6T SRAM Designs -- 7.3.2 7T- SRAM Cell Design -- 7.3.3 8T- SRAM Cell -- 7.3.4 10 T- SRAM Cell -- 7.3.5 SRAM Cell Design Based on Negative Differential Resistance Property -- 7.4 Conclusion -- References -- Chapter 8 Epitaxial Layer-Based Si/SiGe Hetero-Junction Line Tunnel FETs: A Physical Insight -- 8.1 Fundamental Limitation of CMOS: Tunnel FETs -- 8.2 Working Principle of Tunnel FET -- 8.3 Point and Line TFETs: Tunneling Direction -- 8.4 Perspective of Line TFETs -- 8.4.1 Planar Line Tunnel FETs -- 8.4.2 3D Line TFETs -- 8.5 Analytical Models of Line TFETs -- 8.6 Line TFETs for Analog & -- Digital Circuits Design -- 8.7 Other Steep Slope Devices -- 8.8 Conclusion -- References -- Chapter 9 Investigation of Thermal Performance on Conventional and Junctionless Nanosheet Field Effect Transistors -- 9.1 Introduction -- 9.2 Device Simulation Details -- 9.3 Results and Discussion -- 9.3.1 Comparison of Thermal Characteristics of Conventional (CL) and Junctionless (JL) NSFET -- 9.3.2 Comparison of Thermal Performance of High-k Gate Dielectrics for CL NSFET and JL NSFET -- 9.3.3 Comparison of Thermal Performance of Spacer Dielectrics for CL NSFET and JL NSFET -- 9.4 Conclusion -- Acknowledgement -- References -- Chapter 10 Introduction to Newly Adopted NCFET and Ferroelectrics for Low-Power Application -- 10.1 Introduction -- 10.2 NCFET and Its Design Constraints -- 10.2.1 Ferroelectric Materials -- 10.2.2 NCFET Structure -- 10.2.3 Capacitance Matching and Ferroelectric Parameters -- 10.3 NCFET for Low-Power Applications -- 10.3.1 NCFET for Circuit and System Design. 327 $a10.3.2 Impact of Process Variations on NCFET -- 10.3.3 Analytical Models for NCFET -- 10.4 Summary -- References -- Chapter 11 Application of Ferroelectrics: Monolithic-3D Inference Engine with IGZO Based Ferroelectric Thin Film Transistor Synapses -- 11.1 Introduction -- 11.2 Ferroelectricity in Hafnium Oxide -- 11.2.1 Thermodynamic and Kinetic Origin of the Ferroelectric Phase -- 11.2.2 Microstructure-Based Variability in Ferroelectric Response -- 11.3 IGZO Based Ferroelectric Thin Film Transistor -- 11.3.1 Integration and Performance of FeTFT Devices -- 11.3.2 Characterization of FeTFT-Based Neuromorphic Devices -- 11.4 Applications in Neural Networks -- 11.4.1 Monolithic 3D Inference Engine -- 11.5 Conclusion -- References -- Chapter 12 Radiation Effects and Their Impact on SRAM Design: A Comprehensive Survey with Contemporary Challenges -- 12.1 Introduction -- 12.2 Literature Survey -- 12.3 Impact of Radiation Effects on Sram Cells -- 12.4 Results and Discussion -- 12.5 Conclusion -- Declarations -- Data Availability -- References -- Chapter 13 Final Summary and Future of Advanced Ultra Low Power Metal Oxide Semiconductor Field Effect Transistors -- 13.1 Introduction -- 13.2 Challenges in Future Ultra-Low Power Semiconductors -- 13.3 Conclusion -- References -- Index -- EULA. 330 $aThis book delves into the advanced design and application of ultra low-power semiconductor devices, with a focus on transistors such as MOSFETs and TFETs. It explores various aspects of these technologies, including leakage reduction techniques, material properties, and performance comparisons. The book also examines the potential applications of these devices in low-power electronics, memory devices, and analog/RF circuits. Aimed at professionals and researchers in the field of electronics engineering, it provides insights into the challenges and future prospects of semiconductor device technology.$7Generated by AI. 606 $aTransistors$7Generated by AI 606 $aMetal oxide semiconductor field-effect transistors$7Generated by AI 615 0$aTransistors 615 0$aMetal oxide semiconductor field-effect transistors 700 $aTayal$b Shubham$01839454 701 $aUpadhyay$b Abhishek Kumar$01842179 701 $aRahi$b Shiromani Balmukund$01433998 701 $aSong$b Young Suh$01433999 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019744103321 996 $aAdvanced Ultra Low-Power Semiconductor Devices$94422187 997 $aUNINA