LEADER 04015nam 2200673 a 450 001 9911019679703321 005 20200520144314.0 010 $a9786610366200 010 $a9781280366208 010 $a1280366206 010 $a9780470342879 010 $a0470342870 010 $a9780471458494 010 $a047145849X 010 $a9780471449683 010 $a0471449687 035 $a(CKB)111087027116208 035 $a(EBL)163254 035 $a(OCoLC)53121765 035 $a(SSID)ssj0000125258 035 $a(PQKBManifestationID)11133547 035 $a(PQKBTitleCode)TC0000125258 035 $a(PQKBWorkID)10026616 035 $a(PQKB)11618169 035 $a(MiAaPQ)EBC163254 035 $a(PPN)196892538 035 $a(Perlego)2754957 035 $a(EXLCZ)99111087027116208 100 $a20021213d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCombinatorics /$fRussell Merris 205 $a2nd ed. 210 $aHoboken, N.J. $cJohn Wiley$dc2003 215 $a1 online resource (572 p.) 225 1 $aWiley-Interscience series in discrete mathematics and optimization 300 $aDescription based upon print version of record. 311 08$a9780471262961 311 08$a047126296X 320 $aIncludes bibliographical references (p. 501-502) and indexes. 327 $aCombinatorics Second Edition; Contents; Preface; Chapter 1 The Mathematics of Choice; 1.1. The Fundamental Counting Principle; 1.2. Pascal's Triangle; *1.3. Elementary Probability; *1.4. Error-Correcting Codes; 1.5. Combinatorial Identities; 1.6. Four Ways to Choose; 1.7. The Binomial and Multinomial Theorems; 1.8. Partitions; 1.9. Elementary Symmetric Functions; *1.10. Combinatorial Algorithms; Chapter 2 The Combinatorics of Finite Functions; 2.1. Stirling Numbers of the Second Kind; 2.2. Bells, Balls, and Urns; 2.3. The Principle of Inclusion and Exclusion; 2.4. Disjoint Cycles 327 $a2.5. Stirling Numbers of the First KindChapter 3 Po?lya's Theory of Enumeration; 3.1. Function Composition; 3.2. Permutation Groups; 3.3. Burnside's Lemma; 3.4. Symmetry Groups; 3.5. Color Patterns; 3.6. Po?lya's Theorem; 3.7. The Cycle Index Polynomial; Chapter 4 Generating Functions; 4.1. Difference Sequences; 4.2. Ordinary Generating Functions; 4.3. Applications of Generating Functions; 4.4. Exponential Generating Functions; 4.5. Recursive Techniques; Chapter 5 Enumeration in Graphs; 5.1. The Pigeonhole Principle; *5.2. Edge Colorings and Ramsey Theory; 5.3. Chromatic Polynomials 327 $a*5.4. Planar Graphs5.5. Matching Polynomials; 5.6. Oriented Graphs; 5.7. Graphic Partitions; Chapter 6 Codes and Designs; 6.1. Linear Codes; 6.2. Decoding Algorithms; 6.3. Latin Squares; 6.4. Balanced Incomplete Block Designs; Appendix A1 Symmetric Polynomials; Appendix A2 Sorting Algorithms; Appendix A3 Matrix Theory; Bibliography; Hints and Answers to Selected Odd-Numbered Exercises; Index of Notation; Index 330 $aA mathematical gem-freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition:Lively and engaging writing styleTimely and appropriate examplesNumerous well-chosen exercisesFlex 410 0$aWiley series in discrete mathematics and optimization. 606 $aCombinatorial analysis 615 0$aCombinatorial analysis. 676 $a511/.6 700 $aMerris$b Russell$f1943-$0771920 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019679703321 996 $aCombinatorics$94419911 997 $aUNINA