LEADER 08504nam 22005893 450 001 9911019672203321 005 20240707090305.0 010 $a9781394306596 010 $a1394306598 010 $a9781394306572 010 $a1394306571 035 $a(MiAaPQ)EBC31516501 035 $a(Au-PeEL)EBL31516501 035 $a(CKB)32650233000041 035 $a(Exl-AI)31516501 035 $a(Perlego)4471998 035 $a(OCoLC)1446135127 035 $a(EXLCZ)9932650233000041 100 $a20240707d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMechanics of Living Tissues $eImaging, Characterization and Modeling Towards the Study of Soft Tissues 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (344 pages) 225 1 $aISTE Invoiced Series 311 08$a9781789451603 311 08$a1789451604 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction: Mechanics of Living Tissues: Applications, Challenges and Methods -- Chapter 1. Biomechanics of the Liver: Characterizations, Modeling and Clinical Applications -- 1.1. Anatomy and clinical issues -- 1.1.1. Detailed anatomy -- 1.1.2. Main pathologies of the liver -- 1.1.3. Main applications of liver biomechanics -- 1.2. Experimental biomechanical characterizations -- 1.2.1. Characterizations of hepatic parenchyma -- 1.2.2. Influence of the vascular system on the mechanical response -- 1.2.3. Influence of the capsule on the mechanical response -- 1.3. Elastography for the diagnosis of fibrosis, cirrhosis, inflammation and liver tumors -- 1.3.1. Ultrasonic elastography -- 1.3.2. Magnetic resonance elastography -- 1.4. Mechanical modeling -- 1.4.1. Geometry and boundary conditions -- 1.4.2. Constitutive mechanical laws -- 1.5. Conclusion and outlook -- 1.6. Acknowledgments -- 1.7. References -- Chapter 2. Biomechanics of the Skin: Characterizations, Modeling and Scalp Applications -- 2.1. Anatomy and properties of the skin -- 2.1.1. Anatomy and microstructure -- 2.1.2. Mechanical properties -- 2.2. Characterization of the mechanical properties of the skin -- 2.2.1. Ex vivo characterization -- 2.2.2. In vivo characterization -- 2.3. Imaging of the skin -- 2.4. Modeling the mechanical behavior of the skin -- 2.5. A special case: the scalp -- 2.5.1. Anatomy and specificities of the scalp -- 2.5.2. Towards computational simulation of scalp behavior -- 2.6. References -- Chapter 3. Biomechanics of the Cornea -- 3.1. Anatomy and clinical problems -- 3.2. Experimental characterization -- 3.2.1. Imaging -- 3.2.2. Mechanical characterization -- 3.3. Modeling mechanical behavior -- 3.4. Biomaterials -- 3.5. Acknowledgements -- 3.6. References. 327 $aChapter 4. Biomechanical Modeling of the Human Tongue -- 4.1. Introduction -- 4.2. Anatomy of the tongue: environment, topology and partitioning -- 4.3. State of the art on biomechanical modeling of the human tongue -- 4.4. Our 3D FE model of the human tongue -- 4.4.1. Geometry and mesh -- 4.4.2. Constitutive laws -- 4.4.3. Boundary conditions -- 4.5. Numerical simulations -- 4.5.1. Transient simulations -- 4.5.2. Temporal activations of tongue muscles -- 4.5.3. Tongue displacements -- 4.5.4. Tongue trajectories -- 4.6. Discussion -- 4.7. Perspective: model order reduction for real-time simulation -- 4.8. Conclusion -- 4.9. References -- Chapter 5. Biomechanical Characterization of the Disc of the Temporomandibular Joint -- 5.1. Anatomical and geometric description of the temporomandibular joint and its discs -- 5.1.1. The temporomandibular joint -- 5.1.2. The temporomandibular joint disc -- 5.2. Biomechanics of the temporomandibular joint disc -- 5.2.1. Biomechanical tests on the temporomandibular joint disc -- 5.2.2. Simulation of the temporomandibular joint -- 5.3. Perspectives on the study of the temporomandibular joint disc -- 5.4. References -- Chapter 6. Biomechanics of the Intervertebral Disc -- 6.1. Introduction -- 6.2. Anatomy of the spine, disc and clinical issues -- 6.2.1. Anatomy of the spine -- 6.2.2. Disc anatomy and clinical issues -- 6.2.3. Discussion of some clinical issues -- 6.2.4. Structural mechanical properties of the IVD -- 6.2.5. Transport properties of the IVD -- 6.3. IVD modeling -- 6.4. IVD and therapeutic strategies -- 6.5. Conclusion and outlook -- 6.6. References -- Chapter 7. Biomechanics of the Anterior Cruciate Ligament (ACL) -- 7.1. Introduction: ACL physiology and pathologies -- 7.1.1. Anatomy and microstructure -- 7.1.2. Function of the ACL -- 7.1.3. Clinical issues -- 7.2. Mechanical characterization of the ACL. 327 $a7.2.1. Ex vivo characterization of the mechanical properties of the ACL -- 7.2.2. Definitions of physiological stresses -- 7.3. Biomechanical modeling of the ACL -- 7.3.1. Constitutive laws -- 7.3.2. Integration into computational simulations -- 7.4. Toward tissue engineering of the ACL -- 7.4.1. Specifications and challenges -- 7.4.2. State of the art -- 7.4.3. Example of a solution from a computational approach -- 7.4.4. Toward the engineering of a bone-ACL-bone complex -- 7.5. References -- Chapter 8. Mechanoregulation in Soft Biological Tissues: Application to the Development of Arterial Calcifications -- 8.1. Introduction -- 8.1.1. Abbreviations -- 8.1.2. Context -- 8.1.3. Wall structure in large elastic arteries -- 8.1.4. Wall mechanics in large elastic arteries -- 8.2. Mechanoregulation of arteries -- 8.2.1. The mechanostat -- 8.2.2. Mechanotransduction by arterial cells -- 8.2.3. Vascular mechanosome -- 8.2.4. Mechanically regulated molecules controlling vascular remodeling -- 8.3. Biochemistry of MAC -- 8.3.1. Mechanisms of MAC -- 8.3.2. MAC: a disruption of the mechanostat? -- 8.3.3. Perspectives on systems biology modeling of MAC in CKD-MBD -- 8.4. Conclusion -- 8.5. References -- Chapter 9. Biomechanics of Bone Tissue and Its Interactions with Surrounding Tissues -- 9.1. Introduction -- 9.2. Anatomy and physiology of bone from the macroscopic to the molecular scale -- 9.2.1. The human skeleton -- 9.2.2. Cortical bone and cancellous bones -- 9.2.3. Microstructure of the cortical and cancellous bones -- 9.2.4. Bone cells and their functions -- 9.2.5. Bone at the molecular level -- 9.3. Bone tissue imaging and key morphological features -- 9.4. Mechanical behavior of bone and characterization methods -- 9.4.1. Storage, temperature, hydration: key factors for measuring the mechanical properties of biological tissues. 327 $a9.4.2. Characterization of bone structures at the macroscopic scale: accessible mechanical data and implemented methodologies -- 9.4.3. Anisotropic linear elastic behavior of bone tissue -- 9.4.4. Viscoelasticity of bone tissue -- 9.4.5. Bone tissue damage and rupture mechanics -- 9.5. Interactions of bone tissue with surrounding tissues, and clinical implications -- 9.5.1. Bone marrow interface: involvement in osteoporosis and bone tumors -- 9.5.2. Subchondral bone: a major player in the evolution of osteoarthritis -- 9.6. Conclusion and outlook -- 9.7. References -- Conclusion -- List of Authors -- Index. 330 $aThe book 'Mechanics of Living Tissues' explores the biomechanical properties and modeling of various soft tissues in the human body, including the liver, skin, cornea, and tongue. It addresses the anatomy, clinical issues, and mechanical characteristics of these tissues, emphasizing the importance of imaging and modeling techniques. The work, coordinated by Cédric Laurent and Claude Verdier, aims to advance the understanding of biomechanics for clinical applications, focusing on diagnostics and therapy. Intended for researchers, clinicians, and students in biomechanics and medical technology, the book offers insights into tissue behavior and modeling, contributing to medical diagnostics and therapeutic strategies.$7Generated by AI. 410 0$aISTE Invoiced Series 606 $aBiomechanics$7Generated by AI 606 $aTissues$7Generated by AI 615 0$aBiomechanics 615 0$aTissues 676 $a571.5 700 $aLaurent$b Ce?dric$00 701 $aVerdier$b Claude$01838059 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019672203321 996 $aMechanics of Living Tissues$94416960 997 $aUNINA