LEADER 05690nam 22005413 450 001 9911019672003321 005 20241113202211.0 010 $a9781394299065 010 $a1394299060 010 $a9781394299041 010 $a1394299044 035 $a(OCoLC)1435777267 035 $a(MiAaPQ)EBC31354787 035 $a(Au-PeEL)EBL31354787 035 $a(CKB)32157535100041 035 $a(Exl-AI)31354787 035 $a(Perlego)4430125 035 $a(OCoLC)1436833987 035 $a(EXLCZ)9932157535100041 100 $a20240529d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMechanical Energy Conversion $eExercises for Scaling Renewable Energy Systems 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (295 pages) 311 08$a9781786309235 311 08$a1786309238 327 $aCover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Introduction -- Chapter 1 Revision of Fluid Mechanics -- 1.1. Euler's equations -- 1.2. Head and Bernoulli's theorem -- 1.3. Hydrostatics and variation of pressure in a direction perpendicular to a streamline -- 1.4. Linear head losses -- 1.5. Singular head losses -- 1.6. Head variation along a streamline -- 1.7. Kinetic energy balance on a fluid volume -- 1.8. Momentum theorem -- 1.9. Angular momentum theorem -- 1.10. Irrotational flows, potential flows -- Chapter 2 Hydraulic Turbomachines -- 2.1. General information on turbomachinery -- 2.1.1. Turbopumps and turbines -- 2.1.2. Notions of aerodynamics -- 2.1.3. Principle of mechanical conversion: force and power, velocity triangle, fixed reference and mobile reference -- 2.1.4. Rotor and stator -- 2.1.5. Machine with infinite number of blades -- 2.1.6. Similarity of Combe-Rateau -- 2.1.7. Specific speed and classification of roto-dynamic machines -- 2.2. Pump dimensioning -- 2.2.1. Classification of roto-dynamic pumps -- 2.2.2. Centrifugal pumps -- 2.3. Turbine dimensioning -- 2.3.1. Classification of roto-dynamic turbines -- 2.3.2. Dimensioning of Pelton turbines -- 2.4. Exercise: centrifugal pump model -- 2.4.1. Solution -- 2.5. Exercise: radial flow turbine model -- 2.5.1. Solution -- Chapter 3 Wind Power -- 3.1. General -- 3.1.1. The wind resource -- 3.1.2. Energy conversion by a wind turbine -- 3.1.3. The development of the wind power sector in France and in Europe -- 3.2. Exercise: flow through a wind turbine - Betz formula -- 3.2.1. Solution -- 3.3. Exercise: wind turbine rotor model -- 3.3.1. Solution -- Chapter 4 Tidal Energy -- 4.1. General information and status of the sector -- 4.2. Exercise: energy model of the Rance plant -- 4.2.1. Solution -- 4.3. Exercise: sizing a Kaplan turbine. 327 $a4.3.1. Solution -- 4.4. Exercise: marine current turbines farm and modification of currents -- 4.4.1. Solution -- Chapter 5 Hydroelectric Power -- 5.1. Hydroelectric power history and data -- 5.2. Exercise: maximum power provided by a hydroelectric power station -- 5.2.1. Solution -- 5.3. Exercise: dimensioning of a PSH power plant -- 5.3.1. Part I - turbine study -- 5.3.2. Part II - study of pumping -- 5.3.3. Part III - production plants and operation of the hydroelectric power station -- 5.3.4. Solution -- Chapter 6 Osmotic Energy -- 6.1. The phenomenon of osmosis -- 6.2. Exercise: sizing an electricity production system using osmotic energy -- 6.2.1. Solution -- 6.3. State of the art of osmotic energy technology -- Chapter 7 Ocean Thermal Energy Conversion -- 7.1. The OTEC process -- 7.2. Exercise: sizing an OTEC installation using a closed Rankine cycle -- 7.2.1. Sizing of the closed Rankine cycle -- 7.2.2. Sizing of heat exchangers -- 7.2.3. Sizing of deep sea water pumping and conclusions -- 7.3. State of play of the OTEC sector -- 7.4. Guide to sizing a heat exchanger -- Chapter 8 Wave Energy -- 8.1. Surface gravity wave theory -- 8.1.1. General -- 8.1.2. Kinematics of linear surface waves -- 8.1.3. Wave energy and energy flow -- 8.1.4. Reflection of a wave by a vertical wall -- 8.1.5. A laboratory experiment achieving total recovery of the wave energy flow -- 8.1.6. Recovery of wave energy by an oscillating flap or by a heaving buoy -- 8.2. Exercise: sizing an oscillating flap wave energy converter -- 8.2.1. Solution -- 8.3. State of play on wave energy recovery -- References -- Index -- Other titles from ISTE in Energy -- EULA. 330 $aMechanical Energy Conversion: Exercises for Scaling Renewable Energy Systems by Mathieu Mory offers a comprehensive guide on mechanical energy conversion techniques, with a focus on scaling renewable energy systems. The book covers fundamental principles of fluid mechanics and details the operation of hydraulic turbomachines, wind power, and tidal energy systems. It aims to provide readers with practical exercises to understand the dynamics of energy conversion and the engineering behind renewable energy technologies. The target audience includes students, researchers, and professionals in the fields of mechanical engineering and renewable energy.$7Generated by AI. 606 $aEnergy conversion$7Generated by AI 606 $aRenewable energy sources$7Generated by AI 615 0$aEnergy conversion 615 0$aRenewable energy sources 676 $a621.042 700 $aMory$b Mathieu$01838058 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019672003321 996 $aMechanical Energy Conversion$94416959 997 $aUNINA