LEADER 01494nam 2200433I 450 001 9910701309603321 005 20141217161251.0 035 $a(CKB)5470000002417976 035 $a(OCoLC)898218246 035 $a(EXLCZ)995470000002417976 100 $a20141217d2014 ua 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aU.S. Freight on the move $ehighlights from the 2012 Commodity Flow Survey preliminary data /$fby Michael Margreta, Chester Ford, and Ryan Grube 210 1$a[Washington, DC] :$cU.S. Department of Transportation, Bureau of Transportation Statistics,$d2014. 215 $a1 online resource (8 pages) $ccolor illustrations 225 1 $aSpecial report 300 $aTitle from PDF title page (viewed on Dec. 17, 2014 300 $a"August 2014." 320 $aIncludes bibliographical references. 517 $aU.S. Freight on the move 606 $aFreight and freightage$zUnited States$vStatistics 606 $aTonnage$vStatistics 608 $aStatistics.$2lcgft 615 0$aFreight and freightage 615 0$aTonnage 700 $aMargreta$b Michael$01409766 702 $aFord$b Chester 702 $aGrube$b Ryan 712 02$aUnited States.$bBureau of Transportation Statistics, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910701309603321 996 $aU.S. Freight on the move$93497029 997 $aUNINA LEADER 02476nam 2200601 a 450 001 9911019638903321 005 20200520144314.0 010 $a9786610856077 010 $a9781280856075 010 $a1280856076 010 $a9780470515099 010 $a0470515090 010 $a9780470515082 010 $a0470515082 035 $a(CKB)1000000000357379 035 $a(EBL)292598 035 $a(OCoLC)476052648 035 $a(SSID)ssj0000189258 035 $a(PQKBManifestationID)11196661 035 $a(PQKBTitleCode)TC0000189258 035 $a(PQKBWorkID)10156230 035 $a(PQKB)10469687 035 $a(MiAaPQ)EBC292598 035 $a(Perlego)2763042 035 $a(EXLCZ)991000000000357379 100 $a20070803d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLarge deviations for Gaussian queues $emodelling communication networks /$fMichel Mandjes 210 $aChichester $cWiley$dc2007 215 $a1 online resource (338 p.) 300 $aDescription based upon print version of record. 311 08$a9780470015230 311 08$a0470015233 320 $aIncludes bibliographical references and index. 327 $apt. A. Gaussian traffic and large deviations -- pt. B. Large deviations of Gaussian queues -- pt. C. Applications. 330 $aIn recent years the significance of Gaussian processes to communication networks has grown considerably. The inherent flexibility of the Gaussian traffic model enables the analysis, in a single mathematical framework, of systems with both long-range and short-range dependent input streams. Large Deviations for Gaussian Queues demonstrates how the Gaussian traffic model arises naturally, and how the analysis of the corresponding queuing model can be performed. The text provides a general introduction to Gaussian queues, and surveys recent research into the modelling of communications n 606 $aGaussian processes 606 $aTelecommunication$xTraffic$xMathematical models 615 0$aGaussian processes. 615 0$aTelecommunication$xTraffic$xMathematical models. 676 $a621.38215015192 700 $aMandjes$b Michel$g(Michael Robertus Hendrikus),$f1970-$0755624 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019638903321 996 $aLarge deviations for Gaussian queues$94419109 997 $aUNINA