LEADER 05433nam 2200709 a 450 001 9911019614503321 005 20200520144314.0 010 $a9786610856015 010 $a9781280856013 010 $a1280856017 010 $a9780470512098 010 $a0470512091 010 $a9781601195227 010 $a1601195222 010 $a9780470512081 010 $a0470512083 035 $a(CKB)1000000000357173 035 $a(EBL)292592 035 $a(OCoLC)476052627 035 $a(SSID)ssj0000072899 035 $a(PQKBManifestationID)11123302 035 $a(PQKBTitleCode)TC0000072899 035 $a(PQKBWorkID)10103171 035 $a(PQKB)11609751 035 $a(MiAaPQ)EBC292592 035 $a(Perlego)2774444 035 $a(EXLCZ)991000000000357173 100 $a20070621d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRF and microwave transistor oscillator design /$fAndrei Grebennikov 210 $aChichester ;$aHoboken, N.J. $cJohn Wiley$dc2007 215 $a1 online resource (457 p.) 300 $aDescription based upon print version of record. 311 08$a9780470025352 311 08$a0470025352 320 $aIncludes bibliographical references and index. 327 $aContents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION 327 $a2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load 327 $a3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator 327 $a3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15] 327 $a4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator 327 $a5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL 330 $aThe increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reductio 606 $aMicrowave transistors 606 $aRadio frequency oscillators 606 $aOscillators, Transistor 615 0$aMicrowave transistors. 615 0$aRadio frequency oscillators. 615 0$aOscillators, Transistor. 676 $a621.38133 700 $aGrebennikov$b Andrei$f1956-$0725307 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019614503321 996 $aRF and microwave transistor oscillator design$94418475 997 $aUNINA