LEADER 02335nam 22005173 450 001 9911019594303321 005 20241128080256.0 010 $a9781394340507 010 $a1394340508 010 $a9781394340491 010 $a1394340494 010 $a9781394340484 010 $a1394340486 035 $a(MiAaPQ)EBC31804581 035 $a(Au-PeEL)EBL31804581 035 $a(CKB)36676968700041 035 $a(Perlego)4659715 035 $a(OCoLC)1474243206 035 $a(EXLCZ)9936676968700041 100 $a20241128d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNumerical Methods for Strong Nonlinearities in Mechanics $eContact and Fracture 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2024. 215 $a1 online resource (384 pages) 225 1 $aISTE Consignment Series 311 08$a9781789450811 311 08$a1789450810 330 8 $aNumerical Methods for Strong Nonlinearities in Mechanics deals with recent advances in the numerical treatment of contact/friction and damage phenomena. Although physically distinct, these phenomena both lead to a strong nonlinearity in the mechanical problem, therefore limiting the regularity of the problem, which is now non-differentiable. This has two direct consequences: on the one hand, the mathematical characteristics of the problem deviate from wellestablished forms, requiring innovative discretization schemes; on the other hand, the low regularity makes it particularly difficult to solve the corresponding large-scale algebraic systems robustly and efficiently. In addition, neither the uniqueness, nor the existence of solutions, remain assured, resulting in bifurcation points, limit loads and structural instabilities, which are always tricky to overcome numerically. 410 0$aISTE Consignment Series 676 $a531.0151 700 $aBesson$b Jacques$0716554 701 $aLebon$b Frederic$01839884 701 $aLorentz$b Eric$01839885 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019594303321 996 $aNumerical Methods for Strong Nonlinearities in Mechanics$94419279 997 $aUNINA