LEADER 05398nam 2200685Ia 450 001 9911019591903321 005 20200520144314.0 010 $a9786611311698 010 $a9783527313778 010 $a9781281311696 010 $a1281311693 010 $a9783527611973 010 $a3527611975 010 $a9783527611997 010 $a3527611991 035 $a(CKB)1000000000441537 035 $a(EBL)482133 035 $a(OCoLC)609855541 035 $a(SSID)ssj0000299045 035 $a(PQKBManifestationID)11254046 035 $a(PQKBTitleCode)TC0000299045 035 $a(PQKBWorkID)10240357 035 $a(PQKB)10315277 035 $a(MiAaPQ)EBC482133 035 $a(Perlego)2761902 035 $a(EXLCZ)991000000000441537 100 $a20050624d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aHPLC made to measure $ea practical handbook for optimization /$fedited by Stavros Kromidas 210 $aWeinheim $cWiley-VCH ;$a[Chichester $cJohn Wiley, distributor]$dc2006 215 $a1 online resource (789 p.) 300 $aDescription based upon print version of record. 311 08$a9783527313778 311 08$a352731377X 320 $aIncludes bibliographical references and index. 327 $aHPLC Made to Measure; Foreword; Preface; Contents; List of Contributors; Structure of the Book; 1 Fundamentals of Optimization; 1.1 Principles of the Optimization of HPLC Illustrated by RP-Chromatography; 1.1.1 Before the First Steps of Optimization; 1.1.2 What Exactly Do We Mean By "Optimization"?; 1.1.3 Improvement of Resolution ("Separate Better"); 1.1.3.1 Principal Possibilities for Improving Resolution; 1.1.3.2 What has the Greatest Effect on Resolution?; 1.1.3.3 Which Sequence of Steps is Most Logical When Attempting an Optimization?; 1.1.3.4 How to Change k, ?, and N 327 $a1.1.3.4.1 Isocratic Mode1.1.3.4.2 Gradient Mode; 1.1.3.4.3 Acetonitrile or Methanol?; 1.1.4 Testing of the Peak Homogeneity; 1.1.5 Unknown Samples: "How Can I Start?"; Strategies and Concepts; 1.1.5.1 The "Two Days Method"; 1.1.5.2 "The 5-Step Model"; 1.1.6 Shortening of the Run Time ("Faster Separation"); 1.1.7 Improvement of the Sensitivity ("To See More", i.e. Lowering of the Detection Limit); 1.1.8 Economics in HPLC ("Cheaper Separation"); 1.1.9 Final Remarks and Outlook; References; 1.2 Fast Gradient Separations; 1.2.1 Introduction; 1.2.2 Main Part; 1.2.2.1 Theory; 1.2.2.2 Results 327 $a1.2.2.2.1 General Relationships1.2.2.2.2 Short Columns, Small Particles; 1.2.2.2.3 An Actual Example; 1.2.2.3 Optimal Operating Conditions and Limits of Currently Available Technology; 1.2.2.4 Problems and Solutions; 1.2.2.4.1 Gradient Delay Volume; 1.2.2.4.2 Detector Sampling Rate and Time Constant; 1.2.2.4.3 Ion Suppression in Mass Spectrometry; References; 1.3 pH and Selectivity in RP-Chromatography; 1.3.1 Introduction; 1.3.2 Main Section; 1.3.2.1 Ionization and pH; 1.3.2.2 Mobile Phase and pH; 1.3.2.2.1 Buffer Capacity 327 $a1.3.2.2.2 Changes of pK and pH Value in the Presence of an Organic Solvent1.3.2.3 Buffers; 1.3.2.3.1 Classical HPLC Buffers; 1.3.2.3.2 MS-Compatible pH Control; 1.3.2.4 Influence of the Samples; 1.3.2.4.1 The Sample Type: Acids, Bases, Zwitterions; 1.3.2.4.2 Influence of the Organic Solvent on the Ionization of the Analytes; 1.3.3 Application Example; 1.3.4 Troubleshooting; 1.3.4.1 Reproducibility Problems; 1.3.4.2 Buffer Strength and Solubility; 1.3.4.3 Constant Buffer Concentration; 1.3.5 Summary; References; 1.4 Selecting the Correct pH Value for HPLC; 1.4.1 Introduction 327 $a1.4.2 Typical Approaches to pH Selection1.4.3 Initial pH Selection; 1.4.4 Basis of pK(a) Prediction; 1.4.5 Correction of pH Based on Organic Content; 1.4.6 Optimization of Mobile Phase pH Without Chemical Structures; 1.4.7 A Systematic Approach to pH Selection; 1.4.8 An Example - Separation of 1,4-Bis[(2-pyridin-2-ylethyl)thio]butane-2,3-diol from its Impurities; 1.4.9 Troubleshooting Mobile Phase pH; 1.4.10 The Future; 1.4.11 Conclusion; References; 1.5 Optimization of the Evaluation in Chromatography; 1.5.1 Evaluation of Chromatographic Data - An Introduction; 1.5.2 Working Range 327 $a1.5.3 Internal Standard 330 $aThe only topical HPLC book to focus on optimization, this volume addresses the needs of HPLC users who wish to constantly improve their methods, in particular in terms of throughput, accuracy and cost-effectiveness. This handbook features contributions from such bestselling authors as John W. Dolan, Michael McBrien, Veronika R. Meyer, Uwe D. Neue, Lloyd R. Snyder, and Klaus K. Unger, as well as from scientists working for major companies, including Agilent, AstraZeneca, Merck, Schering, Tosoh Biosep, VWR, and Waters. It covers essential aspects of optimization in general, optimization in 606 $aHigh performance liquid chromatography$xMethodology 606 $aLiquid chromatography 615 0$aHigh performance liquid chromatography$xMethodology. 615 0$aLiquid chromatography. 676 $a543.0894 676 $a543.84 701 $aKromidas$b Stavros$01604367 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019591903321 996 $aHPLC made to measure$94419264 997 $aUNINA LEADER 01275nam0 22003493i 450 001 AQ10032807 005 20251003044042.0 010 $a0387943420 010 $a3540943420 100 $a20250307d1995 ||||0itac50 ba 101 | $aeng 102 $aus 181 1$6z01$ai $bxxxe 182 1$6z01$an 183 1$6z01$anc$2RDAcarrier 200 1 $aˆThe ‰microprocessor$ea biography$fMichael S. Malone 210 $aNew York$cSpringer$aSanta Clara (Ca)$cTELOS$dc1995 215 $aXIV, 333 p.$cill.$d24 cm. 606 $aMicroprocessori$xStati Uniti$xStoria$2FIR$3NAPC221303$9I 676 $a004.16$9Elaborazione dei dati. Microelaboratori$v14 676 $a004.16$9cd 20$v22 700 1$aMalone$b, Michael S.$3UFIV105263$4070$0139594 790 1$aMalone$b, Michael Shawn$3CFIV321345$zMalone, Michael S. 790 1$aMalone$b, Mike$3NAPV121033$zMalone, Michael S. 801 3$aIT$bIT-000000$c20250307 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aAQ10032807 950 0$aBiblioteca Centralizzata di Ateneo$b1 v.$c1 v.$d 01SALA DING 004.16 MAL.mi$e 0102 0000028315 VMA A4 1 v.$fY $h20071126$i20071126 977 $a 01 996 $aMicroprocessor$9104560 997 $aUNISANNIO